## DEPARTMENT OF BUSINESS ADMINISTRATION Master of Business Adminstration

## Programme Outcomes, Course Outcome & Course Articulation Matrix with Tables

## **Programme Outcomes:**

**PO1:Management Knowledge** Apply knowledge of Business Management and Management specialization

**PO2:Problem analysis & Decision making-** Identify, formulate research literature, and analyse business Management problems

**PO3:Design/development of solutions** - Design solutions for complex business management problems that meet specified needs with appropriate considerations for profits- people- planet

**PO4:Conduct investigations of complex problems**- Conduct investigations of complex business management problems using research band knowledge, analysis of secondary data, and interpretation of the same.

**PO5:Modern tool usage** - Create, select, and apply appropriate techniques, resources, and IT tools, including modelling and solution generation.

**PO6:The Business and society-** Apply reasoning informed by contextual knowledge to areas of social, health, safety, legal, and cultural issues.

**PO7:Environment and sustainability-** Understand and evaluate the sustainability and impact of business management work in the solution in societal and sustainability contexts.

**PO8:Ethics** - Apply ethical principles and commit to professional ethics and norms of business management practice.

**PO9:Individual and teamwork-** Function effectively as an individual and as a member or leader in diverse teams and multi-specialization teams

**PO10:Communication** - Able to comprehend and write effective reports and make effective presentations, including documentation and retrieval.

**PO11:Project management and finance-** Demonstrate business management knowledge and understanding of business management principles.

**PO12:Life-long learning-** Recognize the need for and have the preparation and ability to engage in independent and lifelong learning.

## **SEMESTER 1 COURSES**

## **C21101 - MANAGEMENT THEORY & PRACTICES**

#### **COURSE OUTCOMES:**

**CO1.** Acquire the conceptual knowledge of Management and various functions of Management.

**CO2.** Apply managerial knowledge in real-world situations.

CO3. Develop a greater understanding of Management.

**CO4.** Demonstrate their exposure to recent trends in management.

CO5. Ability to understand the management process in the corporate world.

|       |     |     | C    | 21101 - | Cours | e Artic | ulation | Matrix | K   |      |      |      |
|-------|-----|-----|------|---------|-------|---------|---------|--------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3  | PO4     | PO5   | PO6     | PO7     | PO8    | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 2   | -    | -       | 2     | 2       | 2       | -      | 3   | 2    | 3    | -    |
| CO2   | 3   | 2   | 2    | 3       | 2     | 1       | -       | 1      | 3   | -    | 3    | -    |
| CO3   | 3   | 2   | 2    | 1       | 2     | 1       | 1       | 2      | 3   | 2    | 3    | -    |
| CO4   | 2   | -   | 2    | -       | 3     | 2       | -       | -      | 3   | 2    | 3    | 3    |
| CO5   | 2   | -   | 3    | 2       | 3     | 2       | -       | -      | 3   | 2    | 3    | 2    |
| W.A   | 2.4 | 2   | 2.25 | 2       | 2.4   | 1.6     | 1.5     | 1.5    | 3   | 2    | 3    | 2.5  |

## **C21102 - ORGANIZATION BEHAVIOUR**

#### **COURSE OUTCOMES:**

**CO1**. Analyze the behavior of individuals in an organization.

C02. Critically examine the potential effects of behavioral issues on an organization.

**CO3**. Distinguish between Teams and Groups and devise methods to enhance their functioning.

CO4. Identify and develop techniques to motivate individuals.

CO5. Assess Leadership qualities and abilities required to sustain.

|       |     |     | C   | 21102 - | Cours | e Artic | ulation | Matrix | ĸ   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|--------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8    | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 3   | 3   | 1       | 3     | 3       | 2       | -      | 3   | -    | 1    | 3    |
| CO2   | 2   | 3   | 3   | 3       | 2     | 3       | 3       | 1      | 3   | -    | 3    | 3    |
| CO3   | 3   | 3   | 3   | 3       | 3     | 2       | 2       | 1      | 3   | 1    | 2    | 1    |
| CO4   | 3   | 3   | 3   | 3       | 3     | 2       | 1       | 2      | 3   | 3    | 1    | 2    |
| CO5   | 3   | 1   | 3   | 3       | 3     | 3       | 3       | 1      | 3   | 1    | 2    | 3    |
| W.A   | 2.6 | 2.6 | 3   | 2.6     | 2.8   | 2.6     | 2.2     | 1      | 3   | 1    | 1.8  | 2.4  |

## **C21103 - CORPORATE ECONOMICS**

#### **COURSE OUTCOMES:**

CO1: To analyze the roles of managers in firms

**CO2**: To design the internal and external decisions to be made by managers

CO3: To think about the demand and supply conditions and assess the position of a company

**CO4:** Design competition strategies, including costing, pricing, product differentiation, and market environment according to the nature of products and the structures of the markets.

**CO5:** Make optimal business decisions by integrating the concepts of economics, mathematics, and statistics.

|       |     |     | C   | 21103 - | Cours | e Artic | ulation | Matri | x   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 3       | 3     | 3       | 3       | 3     | 3   | 3    | 3    | 3    |
| CO2   | 3   | 3   | 3   | 3       | 3     | 3       | 3       | 3     | 3   | 3    | 3    | 3    |
| CO3   | 3   | 2   | 2   | 1       | 2     | 2       | 2       | 3     | 3   | 2    | 2    | 2    |
| CO4   | 3   | 2   | 3   | 3       | 2     | 3       | 3       | 2     | 2   | 2    | 3    | 3    |
| CO5   | 2   | 2   | 1   | 2       | 2     | 3       | 2       | 1     | 2   | 1    | 2    | 2    |
| W.A   | 2.8 | 2.2 | 2.4 | 2.4     | 2.4   | 2.8     | 2.6     | 2.4   | 2.8 | 2.2  | 2.6  | 2.6  |

## **C21104 - ACCOUNTING FOR MANAGERS**

## **COURSE OUTCOMES:**

**CO1.**Demonstrate the applicability of the accounting principles to prepare the accounting to understand the managerial decisions.

**CO2.**Demonstrate the applicability of the depreciation concept to prepare reports and make managerial decisions.

**CO3.**Prepare the final account reports with the accounting tools and concepts and facilitate managerial decisions.

**CO4.**Apply the financial statement analysis associated with financial data in the organization.

**CO5.**Application of accounting standards prepares the accounting and statement.

|       |     |     | C   | 21104 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 1       | 1     | 1       | 1       | 3     | 2   | 3    | 3    | 2    |
| CO2   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 1     | 2   | 3    | 3    | 2    |
| CO3   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 1     | 2   | 3    | 2    | 2    |
| CO4   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 1     | 2   | 3    | 3    | 2    |
| CO5   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 3     | 2   | 3    | 3    | 2    |
| W.A   | 3   | 2   | 3   | 2.6     | 2.6   | 1       | 1       | 1.8   | 2   | 3    | 2.8  | 2    |

## **C21105 - BUSINESS COMMUNICATION**

## **COURSE OUTCOMES:**

CO1. Familiarize students with the technicalities of writing

**CO2**. Enable students to communicate (Written and Oral) in the English language precisely and effectively.

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | C   | 21105 - | Cours | e Artic | ulation | Matri | X   |   |   |     |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---------|-------|---------|---------|-------|-----|---|---|-----|--|--|--|
| PO/CO | PO/CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           CO1         3         2         3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3 |     |     |         |       |         |         |       |     |   |   |     |  |  |  |
| CO1   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2   | 3   | 3       | 3     | 2       | 3       | 2     | 3   | 2 | 3 | 2   |  |  |  |
| CO2   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3   | 2   | 2       | 2     | 2       | 2       | 2     | 2   | 2 | 3 | 3   |  |  |  |
| W.A   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5 | 2.5 | 2.5     | 2.5   | 2       | 2.5     | 2     | 2.5 | 2 | 3 | 2.5 |  |  |  |

## **C21106 - STATISTICS FOR MANAGERS**

## **COURSE OUTCOMES:**

**CO1**: Use Tabular, Diagrammatic, and Graphical presentation in Managerial Decision Making Implementation of Summary statistics in decision making.

CO2: Derive Problem – Solution by using Correlation analysis and Regression analysis.

CO3: Make use of Probability and Distribution in Sequential Managerial analysis.

CO4: Demonstrate data collection through various Sampling techniques.

CO5: Implement Statistical decision theory for Managerial Research problems.

|       |     |     | C   | 21106 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |
| CO2   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |
| CO3   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |
| CO4   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |
| CO5   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |
| W.A   | 1   | 3   | 2   | 3       | 2     | 1       | 1       | -     | -   | 1    | 2    | 1    |

## **C21107 - COMPUTER APPLICATION FOR MANAGERS**

## **COURSE OUTCOMES:**

CO1. Perform intermediate tasks in Microsoft Excel

CO2. Apply advanced tools in Microsoft PowerPoint and Microsoft Word

|                                                                                                                                                                                                                                                                                                                                                                              |     |     | C | 21107 - | Cours | e Artic | ulation | Matri | X   |     |   |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|---------|-------|---------|---------|-------|-----|-----|---|-----|--|
| C21107 - Course Articulation Matrix         PO/CO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO1       3       2       2       3       3       2       3       2       3       3       2         CO2       2       3       2       3       3       2       2       2       3       3 |     |     |   |         |       |         |         |       |     |     |   |     |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                          | 3   | 2   | 2 | 3       | 3     | 2       | 3       | 2     | 3   | 3   | 3 | 2   |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                          | 2   | 3   | 2 | 3       | 3     | 2       | 2       | 2     | 2   | 2   | 3 | 3   |  |
| W.A                                                                                                                                                                                                                                                                                                                                                                          | 2.5 | 2.5 | 2 | 3       | 3     | 2       | 2.5     | 2     | 2.5 | 2.5 | 3 | 2.5 |  |

## C21108 - SKILL DEVELOPMENT 1

## **COURSE OUTCOMES:**

**CO1.** Familiarize oneself with the basic skills needed for a manager.

CO2. Comprehend the art of presentation, e-mail etiquette, and data interpretation

|       |                                                                                                                                                                                                                                                                                      |   | C2  | 21108 - | · Cours | e Artic | ulation | ı Matri | X   |     |     |     |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------|---------|---------|---------|---------|-----|-----|-----|-----|--|--|--|
| PO/CO | PO/CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           CO1         3         -         1         1         -         -         2         2         3         2         2 |   |     |         |         |         |         |         |     |     |     |     |  |  |  |
| CO1   | 3                                                                                                                                                                                                                                                                                    | - | 1   | 1       | -       | -       | -       | 2       | 2   | 3   | 2   | 2   |  |  |  |
| CO2   | 2                                                                                                                                                                                                                                                                                    | - | -   | -       | -       | -       | -       | 2       | 1   | 3   | 1   | 2   |  |  |  |
| W.A   | 2.5                                                                                                                                                                                                                                                                                  | - | 0.5 | 0.5     | -       | -       | -       | 0.8     | 0.6 | 1.2 | 0.6 | 0.8 |  |  |  |

## **SEMESTER 2 COURSES**

## C21201 - MARKETING MANAGEMENT

#### **COURSE OUTCOMES:**

**CO1.**Identify, define, and analyze the marketingproblems.

CO2. Understand Product Aggregation in the Market.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     | C   | 21201 - | Cours | e Artic | ulation | Matri | X   |   |   |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---------|-------|---------|---------|-------|-----|---|---|-----|--|
| C21201 - Course Articulation Matrix           PO/CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           CO1         2         2         1         3         3         2         2         2         3         2         3         2           CO2         3         3         2         3         2         2         2         2         3         3         2 |     |     |     |         |       |         |         |       |     |   |   |     |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2   | 2   | 1   | 3       | 3     | 2       | 2       | 2     | 3   | 2 | 3 | 2   |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3   | 3   | 2   | 3       | 3     | 2       | 2       | 2     | 2   | 2 | 3 | 3   |  |
| W.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5 | 2.5 | 1.5 | 3       | 3     | 2       | 2       | 2     | 2.5 | 2 | 3 | 2.5 |  |

## **C21202 - HUMAN RESOURCE MANAGEMENT**

## **COURSE OUTCOMES:**

**CO1.**Ability to plan human resources and develop competency in job analysis.

CO2. Competency to recruit and select employees.

**CO3.** Competency to train people and evaluate training.

CO4. Ability to design appraisal performance systems and appraise employees' performance.

CO5. Design of compensation and salary administration.

|       |     |     | C    | 21202 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|------|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3  | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | -   | -    | 3       | 3     | 3       | -       | 1     | 2   | 3    | 2    | 2    |
| CO2   | 3   | -   | 2    | 2       | 2     | 2       | -       | 3     | 3   | 2    | 2    | -    |
| CO3   | 3   | -   | 3    | -       | 3     | 2       | -       | 2     | 3   | 3    | 3    | 3    |
| CO4   | 3   | 2   | 3    | 3       | 3     | 2       | -       | 3     | 3   | 3    | 2    | -    |
| CO5   | 3   | 3   | 3    | 2       | -     | 3       | -       | 2     | 3   | -    | 2    | -    |
| W.A   | 3   | 2.5 | 2.75 | 2.5     | 2.75  | 2.4     | -       | 2.2   | 2.8 | 2.75 | 2.2  | 2.5  |

## C21203 - CORPORATE FINANCE

## **COURSE OUTCOMES:**

**CO1**. Demonstrate a comprehensive knowledge of the applicability of the time value of money

CO2. Analyse and valuation of various securities which are traded in the Indian stock market

**CO3.**Analyse and evaluate long-term capital investment and analyze cost of capital to make managerial decisions.

CO4.Equipped with the knowledge of dividend decision

**CO5.**Analyse and estimate working capital requirements for carrying day-to-day business in an organization.

|       |     |     | C   | 21203 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 2       | 2     | 1       | 1       | 3     | 2   | 1    | 2    | 1    |
| CO2   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 3     | 2   | 1    | 2    | 1    |
| CO3   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 3     | 2   | 2    | 2    | 1    |
| CO4   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 3     | 1   | 2    | 2    | 1    |
| CO5   | 3   | 2   | 3   | 3       | 3     | 1       | 1       | 3     | 1   | 2    | 1    | 1    |

| W.A | 3 | 2 | 3 | 2.8 | 2.8 | 1 | 1 | 3 | 1.6 | 1.6 | 1.8 | 1 |
|-----|---|---|---|-----|-----|---|---|---|-----|-----|-----|---|
|-----|---|---|---|-----|-----|---|---|---|-----|-----|-----|---|

#### **C21204 - BUSINESS RESEARCH METHODS**

### **COURSE OUTCOMES:**

**CO1.**Management decision-making.

**CO2:** Develop and design a Research Proposal.

**CO3:** Develop the skill to construct the Structures questionnaire and comprehend the Research Methodology.

**CO4:** Devise tools and methods for data collection using Sampling techniques.

**CO5:** Develop the skill for data analysis and interpretation and presentation of research report.

|       | C21204 - Course Articulation Matrix |     |     |     |     |     |     |     |     |      |      |      |  |  |  |
|-------|-------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|--|
| PO/CO | PO1                                 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |  |
| CO1   | 2                                   | 2   | 3   | 3   | 2   | 2   | 2   | -   | -   | 2    | 2    | 1    |  |  |  |
| CO2   | -                                   | 3   | 3   | 3   | 2   | 1   | 2   | -   | -   | 1    | -    | 1    |  |  |  |
| CO3   | -                                   | 3   | 3   | 3   | 3   | 1   | 2   | -   | -   | 1    | -    | 1    |  |  |  |
| CO4   | -                                   | 3   | 3   | 3   | 3   | 1   | 2   |     | -   | 1    | -    | 1    |  |  |  |
| CO5   | -                                   | 3   | 3   | 3   | 3   | 1   | 2   | -   | -   | 3    | 1    | 1    |  |  |  |
| W.A   | 2.0                                 | 2.8 | 3.0 | 3.0 | 2.6 | 1.2 | 2   | -   | -   | 1.6  | 0.6  | 1.0  |  |  |  |

## **C21205 - OPERATIONS MANAGEMENT**

#### **COURSE OUTCOMES:**

**CO1.**Familiarize students with turning raw materials into deliverable products or services including both man and material

**CO2.** Apply different quantitative tools and techniques for decision-making in operations management.

|       |     |     | C   | 21205 · | - Cours | se Artic | culatior | n Matri | X   |      |      |      |
|-------|-----|-----|-----|---------|---------|----------|----------|---------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5     | PO6      | PO7      | PO8     | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 2   | 3       | 3       | 2        | 3        | 2       | 3   | 3    | 3    | 2    |
| CO2   | 2   | 3   | 2   | 3       | 3       | 2        | 2        | 2       | 2   | 2    | 3    | 3    |
| W.A   | 2.5 | 2.5 | 2   | 3       | 3       | 2        | 2.5      | 2       | 2.5 | 1.5  | 3    | 1.5  |

## **C21206 - LEGAL ASPECTS OF BUSINESS**

#### **COURSE OUTCOMES:**

CO1. Analyze various laws about business organizations.

**CO2.** Distinguish between various foreign exchange transactions required by business organizations.

CO3. Recognize and identify the rights and responsibilities of consumers.

CO4. Explain the rights of the creator through IPR.

**CO5.** Review the provisions for different kinds of companies.

|       | C21206 - Course Articulation Matrix |     |     |     |     |     |     |     |     |      |      |      |  |  |  |
|-------|-------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|--|
| PO/CO | PO1                                 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |  |
| CO1   | 3                                   | 3   | 3   | 3   | 1   | 1   | 3   | 3   | -   | 1    | 2    | 1    |  |  |  |
| CO2   | 2                                   | 3   | 3   | 3   | 1   | 3   | 1   | 2   | 2   | 1    | 3    | 2    |  |  |  |
| CO3   | 3                                   | 3   | 2   | 2   | 2   | 1   | 2   | 3   | 3   | -    | 1    | 2    |  |  |  |
| CO4   | 3                                   | 3   | 2   | 1   | 3   | 3   | 1   | 2   | 2   | -    | 2    | 2    |  |  |  |
| CO5   | 3                                   | 3   | 2   | 3   | 3   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |  |  |  |
| W.A   | 2.8                                 | 3   | 2.4 | 2.4 | 2   | 2   | 1.8 | 2.6 | 2.5 | 1    | 2.2  | 2    |  |  |  |

## C21207 - SKILL DEVELOPMENT 2

## **COURSE OUTCOMES:**

**CO1.** The ability of students to develop effective communication skills required for a successful manager

CO2. Evaluate the entrepreneurial thoughts

|       |     |     | C   | 21207 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|---------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4     | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 2   | 3       | 3     | 2       | 2       | 2     | 3   | 2    | 3    | 2    |
| CO2   | 2   | 3   | 2   | 3       | 3     | 2       | 2       | 2     | 3   | 2    | 3    | 3    |
| W.A   | 2.5 | 2.5 | 2   | 3       | 3     | 2       | 2       | 2     | 3   | 2    | 3    | 2.5  |

## **SEMESTER 3 COURSES**

## 21C302 - ENTREPRENEURSHIP & QUALITY MANAGEMENT

#### **COURSE OUTCOMES:**

**CO1**. Enable the students to develop different methods that can be used to minimize uncertainties at different stages of the entrepreneurial process in a highly uncertain environment

**CO2.** Analyze requirements develop quality improvement programs and manage quality improvement teams.

|       |     |     | 21  | C302 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3   | 1   | 3      | 3     | 2       | 3       | 2     | 3   | 3    | 3    | 2    |
| CO2   | 3   | 1   | 2   | 3      | 2     | 1       | 2       | 1     | 2   | 2    | 3    | 3    |
| W.A   | 3.0 | 2.0 | 1.5 | 3.0    | 2.5   | 1.5     | 2.5     | 1.5   | 2.5 | 2.5  | 3.0  | 2.5  |

## 21C301 - STRATEGIC MANAGEMENT

#### **COURSE OUTCOMES:**

CO1. Able to develop and deliver effective strategies on a given for a business firm.

**CO2.** Able to Develop effective planning and communication channels in Strategic Business Plans

|       |     |     | 21  | C301 - | - Cours | e Artic | ulation    | n Matri | X   |      |      |      |
|-------|-----|-----|-----|--------|---------|---------|------------|---------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5     | PO6     | <b>PO7</b> | PO8     | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 3   | 1   | 3      | 3       | 2       | 3          | 2       | 3   | 2    | 3    | 2    |
| CO2   | 3   | 3   | 1   | 2      | 2       | 1       | 2          | 1       | 2   | 2    | 3    | 3    |
| W.A   | 2.5 | 3.0 | 1.0 | 2.5    | 2.5     | 1.5     | 2.5        | 1.5     | 2.5 | 2.0  | 3.0  | 2.5  |

## 21C313 SKILL DEVELOPMENT 3

#### **COURSE OUTCOMES:**

- CO1. Appreciate the reasoning capability
- CO2. Sharpen employability skills

|       |     |     | 21  | C313 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 2   | 2   | 3      | 3     | 2       | 2       | 2     | 3   | 2    | 3    | 2    |
| CO2   | 3   | 2   | 2   | 3      | 3     | 3       | 2       | 2     | 3   | 2    | 3    | 3    |
| W.A   | 2.5 | 2   | 2   | 3      | 3     | 2.5     | 2       | 2     | 3   | 2    | 3    | 2.5  |

## **ELECTIVE GROUP1 - MARKETING MANAGEMENT**

## 21C3M1 – CONSUMER BEHAVIOUR

#### **COURSE OUTCOMES:**

CO1.Distinguish between different consumer Behaviour influences and their relationships

**CO2.** Establish the relevance of consumer Behaviour theories and concepts to marketing decisions

|       |      |      | 210  | C <b>3M1</b> · | - Cours | se Artic | culation | n Matri | x    |      |      |      |
|-------|------|------|------|----------------|---------|----------|----------|---------|------|------|------|------|
| PO/CO | PO1  | PO2  | PO3  | PO4            | PO5     | PO6      | PO7      | PO8     | PO9  | PO10 | PO11 | PO12 |
| CO1   | 2    | 2    | 1    | 3              | 3       | 2        | 2        | 2       | 3    | 2    | 3    | 2    |
| CO2   | 3    | 3    | 2    | 3              | 3       | 2        | 2        | 2       | 2    | 2    | 3    | 3    |
| W.A   | 1.67 | 1.67 | 1.00 | 2.00           | 2.00    | 1.33     | 1.33     | 1.33    | 1.67 | 1.33 | 2.00 | 1.67 |

## 21C3M2 – SALES & LOGISTIC MANAGEMENT

#### **COURSE OUTCOMES:**

**CO1.** Implement appropriate combinations of theories and concepts.

**CO2.** Enable students to evaluate the opportunities for improvement

**CO3.** Equip students to provide better customer service.

|       |     |     | 21  | C3M2 · | - Cours | se Artio | culation | ı Matri | x   |      |      |      |
|-------|-----|-----|-----|--------|---------|----------|----------|---------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5     | PO6      | PO7      | PO8     | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 3      | 3       | 2        | 3        | 2       | 3   | 2    | 3    | 2    |
| CO2   | 2   | 3   | 2   | 2      | 3       | 2        | 2        | 2       | 2   | 2    | 3    | 3    |
| W.A   | 2.5 | 2.5 | 2.5 | 2.5    | 2       | 2        | 2.5      | 2       | 2.5 | 2    | 3    | 2.5  |

## 21C3M3 – ADVERTISING & SALES PROMOTION

#### **COURSE OUTCOMES:**

**CO1.** Distinguish different situations in the competitive environment will affect choices in target marketing

**CO2.** Communicate marketing information persuasively and accurately in oral, written, and graphic formats

|       |                                                                                                                             |      | 21    | C3M3 - | - Cours  | e Artic | ulation | Matri | X    |      |      |      |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------|------|-------|--------|----------|---------|---------|-------|------|------|------|------|--|--|--|
| PO/CO | PO1                                                                                                                         | PO2  | PO3   | PO4    | PO5      | PO6     | PO7     | PO8   | PO9  | PO10 | PO11 | PO12 |  |  |  |
| CO1   | CO1         3         2         2         3         3         2         3         2         3         3         3         2 |      |       |        |          |         |         |       |      |      |      |      |  |  |  |
| CO2   | 2                                                                                                                           | 3    | 2     | 3      | 3        | 2       | 2       | 2     | 2    | 2    | 3    | 3    |  |  |  |
| W.A   | 1.67                                                                                                                        | 1.67 | 1.33  | 2.00   | 2.00     | 1.33    | 1.67    | 1.33  | 1.67 | 1.67 | 2.00 | 1.67 |  |  |  |
|       |                                                                                                                             | ELE  | CTIVE | GRO    | UP 2 - ] | FINAN   | CIAL    | MANA  | GEMF | ENT  |      |      |  |  |  |

## 21C3F1 – STRATEGIC FINANCIAL MANAGEMENT

## **COURSE OUTCOMES:**

CO1. Formulate financial planning and develop insight into financial models.

CO2. Design and Plan the capital structure

CO3. Apply different techniques of risk analysis

CO4. Critically analyses leasing decisions

CO5. Think creatively to resolve financial problems in business

|       |     |     | 21  | C3F1 - | Cours | e Artic | ulation | Matrix | K   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|--------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8    | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 1   | 3      | 3     | 2       | 3       | 2      | 3   | 2    | 3    | 2    |
| CO2   | 2   | 3   | 1   | 2      | 3     | 1       | 2       | 1      | 2   | 1    | 3    | 3    |
| CO3   | 3   | 3   | 3   | 3      | 3     | 1       | 2       | 1      | 1   | 1    | 3    | 3    |
| CO4   | 3   | 3   | 3   | 3      | 3     | 1       | 2       | 1      | 1   | 1    | 3    | 3    |
| CO5   | 3   | 3   | 3   | 3      | 3     | 3       | 3       | 3      | 3   | 3    | 3    | 3    |
| W.A   | 2.8 | 2.8 | 2.2 | 2.8    | 3     | 1.6     | 2.4     | 1.6    | 2   | 1.6  | 3    | 2.8  |

## 21C3F2 – FINANCIAL MARKET & SERVICES

## **COURSE OUTCOMES:**

CO1. Evaluate various financial products in the primary and secondary markets

CO2. Analyze the functioning of the Stock Exchange

CO3. Analyze the banking and non-banking operations

CO4. Examine the Regulatory bodies

|       |     |     | 21  | C3F2 - | Cours | e Artic | ulation | Matrix | K   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|--------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8    | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 1   | 1   | 1      | 1     | 1       | 1       | 1      | 1   | 1    | 2    | 1    |
| CO2   | 3   | 1   | 1   | 1      | 1     | 1       | 1       | 1      | 1   | 1    | 1    | 2    |
| CO3   | 2   | 1   | 1   | 1      | 2     | 1       | 3       | 2      | 1   | 1    | 1    | 1    |

| CO4 | 1    | 2    | 2    | 1 | 1    | 2    | 2    | 2   | 1 | 2    | 3    | 2   |
|-----|------|------|------|---|------|------|------|-----|---|------|------|-----|
| W.A | 2.25 | 1.25 | 1.25 | 1 | 1.25 | 1.25 | 1.75 | 1.5 | 1 | 1.25 | 1.75 | 1.5 |

## 21C3F3 – INVESTMENT ANALYSIS & PORTFOLIO MANAGEMENT

#### **COURSE OUTCOMES:**

**CO1.** Explored different avenues of investment and applied the concept of portfolio management for better investment.

**CO2.** Determining the portfolio risk, and return and measuring them based on various techniques and investing in less risk and more return securities.

CO3. Equipped with the knowledge of security analysis and valuation for the right investment.

CO4. Pre and post-investment analysis using fundamental and technical analysis for better investment

|       |     |     | 21  | C3F3 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 1   | 1   | 1      | 1     | 1       | 2       | 1     | 1   | 1    | 2    | 2    |
| CO2   | 3   | 1   | 3   | 2      | 3     | 1       | 2       | 2     | 1   | 3    | 3    | 2    |
| CO3   | 3   | 1   | 3   | 2      | 3     | 1       | 2       | 2     | 1   | 3    | 3    | 2    |
| CO4   | 3   | 2   | 3   | 2      | 2     | 1       | 2       | 2     | 1   | 3    | 3    | 2    |
| CO5   | 3   | 1   | 3   | 2      | 2     | 1       | 2       | 2     | 1   | 3    | 3    | 2    |
| W.A   | 3   | 1.2 | 2.6 | 1.8    | 2.2   | 1       | 2       | 1.8   | 1   | 2.6  | 2.8  | 2    |

CO5. Performance evaluation and style analysis of investment and portfolio revision.

## **ELECTIVE GROUP 3 - HUMAN RESOURCE MANAGEMENT**

## 21C3H1 – PERSONAL GROWTH & INTERPERSONAL EFFECTIVENESS

## **COURSE OUTCOMES:**

**CO1.** Ability to set short-term and long-term goals.

**CO2.** Ability to distinguish between cultures, change attitudes of people, and develop knowledge on improving job satisfaction of employees.

CO3. Develop learning skills and skills related to positive reinforcement.

**CO4.** Ability to identify an individual's personality type favorable or unfavorable to work performance.

**CO5.** Ability to identify sources and causes of conflicts and develop conflict resolution strategies.

CO6. Ability to identify causes of stress and develop stress coping strategies.

|       |     |     | 2 1 | C3H1 | - Cour | se Artio | culation | n Matri | ix   |      |      |      |
|-------|-----|-----|-----|------|--------|----------|----------|---------|------|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4  | PO5    | PO6      | PO7      | PO8     | PO9  | PO10 | PO11 | PO12 |
| CO1   | 3   | -   | -   | -    | -      | 1        | -        | -       | 2    | 1    | 3    | -    |
| CO2   | 3   | 2   | 2   | -    | -      | 3        | 2        | -       | 2    | -    | -    | -    |
| CO3   | 3   | 1   | 2   | -    | 3      | 2        | 2        | -       | 2    | -    | -    | 3    |
| CO4   | 3   | 2   | 3   | -    | -      | -        | -        | -       | 2    | -    | -    | -    |
| CO5   | 3   | 3   | 3   | -    | -      | 2        | 2        | -       | 3    | -    | 2    | -    |
| CO6   | 3   | 3   | 3   | -    | -      | 3        | 2        | 2       | 3    | -    | -    | -    |
| W.A   | 3   | 2.2 | 2.6 | -    | 3      | 2.2      | 2        | 2       | 2.33 | 1    | 2.5  | 3    |

#### 21C3H2 – ORGANIZATIONAL CHANGE & DEVELOPMENT

#### **COURSE OUTCOMES:**

**CO1.** Develop the knowledge of planning for organizational change and apply appropriate strategies for implementing planned change.

**CO2.** Ability to identify the sources of resistance to change and overcome resistance to change.

**CO3.** Ability to apply theories of change management in the work environment.

**CO4.** Application of appropriate OD intervention for organizational change and development.

|       |     |      | 21  | C3H2 - | Cours | e Artic | ulation | Matri | X   |      |      |      |
|-------|-----|------|-----|--------|-------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2  | PO3 | PO4    | PO5   | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3    | 2   | -      | -     | -       | -       | -     | 2   | 1    | 3    | 2    |
| CO2   | 3   | 2    | 3   | 2      | 2     | 2       | 2       | -     | 2   | -    | 2    | -    |
| CO3   | 3   | 2    | 2   | 2      | 2     | 2       | 1       | -     | 2   | -    | 2    | 2    |
| CO4   | 3   | -    | 3   | 3      | 2     | 3       | 1       | -     | 2   | -    | 2    | -    |
| W.A   | 3   | 2.33 | 2.5 | 2.33   | 2     | 2.33    | 1.33    | -     | 2   | 1    | 2.75 | 2    |

#### 21C3H3 – TRAINING IN ORGANIZATIONS

### **COURSE OUTCOMES:**

**CO1.** Assess the importance of training in organizations.

CO2. Compute training needs analysis for organizations.

**CO3.** Compare and contrast different training methods.

CO4. Identify the skills required for the trainer.

**CO5.** Evaluate the effectiveness of training programs through various models and theories.

|       |     |     | 21  | C3H3 - | Cours | e Artic | ulation | Matrix | K   |      |      |      |
|-------|-----|-----|-----|--------|-------|---------|---------|--------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4    | PO5   | PO6     | PO7     | PO8    | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3   | 3   | 2      | 3     | 3       | 2       | 2      | 2   | 2    | 3    | 3    |
| CO2   | 3   | 3   | 3   | 3      | 2     | 2       | 2       | 3      | 3   | 1    | 3    | 3    |
| CO3   | 3   | 3   | 3   | 3      | 3     | 2       | 2       | 3      | 3   | 1    | 3    | 2    |
| CO4   | 2   | 3   | 2   | 2      | 2     | 3       | 3       | 1      | 3   | 2    | 3    | 3    |
| CO5   | 3   | 3   | 3   | 3      | 2     | 2       | 2       | 3      | 3   | 3    | 1    | 2    |
| W.A   | 2.8 | 3   | 2.8 | 2.6    | 2.4   | 2.4     | 2.2     | 2.4    | 2.8 | 1.8  | 2.6  | 2.6  |

## **SEMESTER 4 COURSES**

## 21C401 - EVENT MANAGEMENT

## **COURSE OUTCOMES:**

**CO1** - Enable students to evaluate the opportunities in event management and handle problems

CO2 - Equip students to provide better services by using measuring techniques

|       |     |     |     | 21C4 | 01 - C | ourse A | rticula | tion |     |      |      |      |
|-------|-----|-----|-----|------|--------|---------|---------|------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4  | PO5    | PO6     | PO7     | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 3    | 3      | 2       | 3       | 1    | 3   | 2    | 3    | 2    |
| CO2   | 2   | 3   | 2   | 2    | 3      | 2       | 2       | 2    | 2   | 2    | 3    | 3    |
| W.A   | 2.5 | 2.5 | 2.5 | 2.5  | 3.0    | 2.0     | 2.5     | 1.5  | 2.5 | 2.0  | 3.0  | 2.5  |

## **ELECTIVE GROUP 6 - MARKETING MANAGEMENT**

## 21C4M4 - BRAND MANAGEMENT

#### **COURSE OUTCOMES:**

CO1 - Enable the students to develop and deliver effective presentation on a given brand.

|       |     |     |     | <b>21C4</b> | M4 - C | ourse A | Articula | ation |     |      |      |      |
|-------|-----|-----|-----|-------------|--------|---------|----------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5    | PO6     | PO7      | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 2   | 1   | 3           | 3      | 2       | 3        | 2     | 3   | 2    | 3    | 2    |
| CO2   | 3   | 3   | 1   | 2           | 2      | 1       | 2        | 1     | 2   | 2    | 3    | 3    |
| W.A   | 2.5 | 2.5 | 1   | 2.5         | 2.5    | 1.5     | 2.5      | 1.5   | 2.5 | 2    | 3    | 2.5  |

CO2 - Develop effective interpersonal communication

## 21C4M5 - INDUSTRIAL MARKETING

### **COURSE OUTCOMES:**

**CO1** - Provide analytical skills to recognize the product manufacturing strategies that support broader marketing decisions.

**CO2** - Evaluate the capacity and demand management in industrial marketing.

CO3 - Comprehend the art to explain the concept of product quality.

|       |     |     |     | <b>21C4</b> | M5 - C | ourse A | Articula | ation |     |      |      |      |
|-------|-----|-----|-----|-------------|--------|---------|----------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5    | PO6     | PO7      | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 2   | 3           | 3      | 2       | 3        | 2     | 3   | 2    | 3    | 2    |
| CO2   | 2   | 3   | 1   | 2           | 3      | 2       | 2        | 2     | 2   | 2    | 3    | 3    |
| CO3   | 3   | 3   | 3   | 3           | 2      | 2       | 2        | 2     | 2   | 2    | 3    | 3    |
| W.A   | 2.7 | 2.7 | 2.0 | 2.7         | 2.7    | 2.0     | 2.3      | 2.0   | 2.3 | 2.0  | 3.0  | 2.7  |

## 21C4M6 - SERVICES MARKETING

#### **COURSE OUTCOMES:**

**CO1** - Provide analytical skills to recognize the service as strategy that support broader marketing decisions.

CO2 - Evaluate the capacity and demand management in service marketing.

**CO3** - Comprehend the art to explain the concept of service quality.

|       |                                                                                                                                                          |   |   | <b>21C4</b> | M6 - C | ourse A | Articula | ation |   |   |   |   |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------------|--------|---------|----------|-------|---|---|---|---|--|--|
| PO/CO | PO/CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |   |   |             |        |         |          |       |   |   |   |   |  |  |
| CO1   | 3                                                                                                                                                        | 2 | 2 | 3           | 3      | 2       | 3        | 2     | 3 | 2 | 3 | 2 |  |  |
| CO2   | 2                                                                                                                                                        | 3 | 2 | 2           | 3      | 2       | 2        | 2     | 2 | 2 | 3 | 3 |  |  |

| CO3 | 3    | 3    | 3    | 3    | 3 | 2 | 2    | 2 | 2    | 2 | 3 | 3    |
|-----|------|------|------|------|---|---|------|---|------|---|---|------|
| W.A | 2.66 | 2.66 | 2.66 | 2.66 | 3 | 2 | 2.33 | 2 | 2.33 | 2 | 3 | 2.66 |

## 21C4M7 - INTERNATIONAL MARKETING

## **COURSE OUTCOMES:**

**CO1** - Develop an understanding of and an appreciation for basic international marketing concepts, theories, principles, and terminology.

**CO2** - Be able to demonstrate an awareness and knowledge of the impact of environmental factors (cultural, economic, institutional, legal and political) on international marketing activities.

**CO3** - Be capable of identifying international customers through conducting marketing research and developing cross-border segmentation and positioning strategies.

**CO4** - Be capable of developing a global marketing strategy by applying the basic concepts of product, pricing, promotion, and channels of distribution in international settings.

|       |     |     |     | <b>21C4</b> | M7 - C | Course A | Articul | ation |     |      |      |      |
|-------|-----|-----|-----|-------------|--------|----------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5    | PO6      | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3   | 3           | 3      | 3        | 3       | 3     | 3   | 3    | 3    | 3    |
| CO2   | 3   | 3   | 3   | 3           | 3      | 3        | 3       | 3     | 3   | 3    | 3    | 3    |
| CO3   | 3   | 2   | 2   | 1           | 2      | 2        | 2       | 3     | 3   | 2    | 2    | 2    |
| CO4   | 3   | 2   | 3   | 3           | 2      | 3        | 3       | 2     | 2   | 2    | 3    | 3    |
| W.A   | 3   | 2.2 | 2.7 | 2.5         | 2.5    | 2.7      | 2.7     | 2.7   | 2.7 | 2.5  | 2.7  | 2.7  |

## **ELECTIVE GROUP 7 - FINANCIAL MANAGEMENT**

## 21C4F4 – MERGERS & ACQUISITION

## **COURSE OUTCOMES:**

CO1 - Critically analyses Impact of Mergers and acquisition on stakeholders

- CO2 Make an informed decision with due diligence
- CO3- Apply Business valuation approaches
- CO4 Evaluate purchase consideration in Mergers and Acquisition

CO5 - Analyze the Legal aspect of merger and acquisition

|       |     |     |     | <b>21C4</b> | F4 - C | ourse A | Articula | ation |     |      |      |      |
|-------|-----|-----|-----|-------------|--------|---------|----------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5    | PO6     | PO7      | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3   | 3   | 3           | 3      | 2       | 3        | 3     | 3   | 3    | 3    | 3    |
| CO2   | 3   | 3   | 3   | 3           | 3      | 2       | 3        | 3     | 3   | 3    | 3    | 3    |
| CO3   | 3   | 3   | 3   | 3           | 3      | 1       | 2        | 1     | 1   | 3    | 3    | 3    |
| CO4   | 3   | 3   | 3   | 3           | 3      | 3       | 3        | 2     | 2   | 3    | 3    | 3    |
| CO5   | 2   | 2   | 3   | 3           | 1      | 1       | 2        | 2     | 2   | 2    | 2    | 2    |
| W.A   | 2.8 | 2.8 | 3   | 3           | 2.6    | 1.8     | 2.6      | 2.2   | 2.2 | 2.8  | 2.8  | 2.8  |

21C4F5 - DERIVATIVES

## **COURSE OUTCOMES:**

CO1 - Demonstrate a comprehensive knowledge of derivatives, its types and market structure

**CO2** - Enable to select right kind of derivatives amongst forward, futures, options and swaps for risk hedging.

CO3 - Evaluate forward, futures, options pricing models for make high profit through risk hedging.

CO4 - Critically analyses trading/hedging strategies using derivatives options contracts.

CO5 - Comprehensive knowledge derivative products and their performance in Indian and global markets.

|       |     |     |     | <b>21C4</b> | F5 - Co | ourse A | rticula | tion |     |      |      |      |
|-------|-----|-----|-----|-------------|---------|---------|---------|------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5     | PO6     | PO7     | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 1   | 2   | 1           | 2       | 1       | 2       | 2    | 1   | 2    | 2    | 2    |
| CO2   | 3   | 1   | 3   | 3           | 3       | 1       | 2       | 3    | 1   | 3    | 3    | 2    |
| CO3   | 3   | 1   | 3   | 3           | 3       | 1       | 2       | 3    | 2   | 3    | 3    | 2    |
| CO4   | 3   | 1   | 3   | 3           | 2       | 1       | 2       | 2    | 2   | 3    | 3    | 2    |
| CO5   | 3   | 1   | 2   | 1           | 2       | 1       | 1       | 1    | 2   | 2    | 2    | 2    |
| W.A   | 3   | 1   | 2.6 | 2.2         | 2.4     | 1       | 1.8     | 2.2  | 1.6 | 2.6  | 2.6  | 2    |

## 21C4F6 - INTERNATIONAL FINANCE

## **COURSE OUTCOMES:**

- CO1 Analyze the international integration of financial markets
- CO2 Critically analyses strategies to Hedge against foreign exchange exposure

**CO3** - Apply financial knowledge in forecasting foreign exchange rates

CO4 - Evaluate strategies used by Multinational Corporation

|       |     |      |     | 21C4 | F6 - C | ourse A | rticula | tion |     |      |      |      |
|-------|-----|------|-----|------|--------|---------|---------|------|-----|------|------|------|
| PO/CO | PO1 | PO2  | PO3 | PO4  | PO5    | PO6     | PO7     | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2    | 3   | 3    | 3      | 1       | 2       | 3    | 3   | 3    | 3    | 3    |
| CO2   | 3   | 3    | 3   | 3    | 3      | 1       | 2       | 3    | 2   | 3    | 3    | 3    |
| CO3   | 3   | 3    | 3   | 3    | 3      | 1       | 3       | 2    | 2   | 3    | 3    | 3    |
| CO4   | 3   | 3    | 3   | 3    | 2      | 1       | 2       | 3    | 3   | 3    | 3    | 3    |
| W.A   | 3   | 2.75 | 3   | 3    | 2.75   | 1       | 2.25    | 2.75 | 2.5 | 3    | 3    | 3    |

## 21C4F7 - TAXATION

## **COURSE OUTCOMES:**

CO1 - Illustrate the income of different heads and gross total income of an Individual assesse

**CO2** - Illustrate the concepts and features of assessment of profits and gains of individual and corporate assesse.

CO3 - Knowledge of different types of return filing

CO4 - Comprehensive knowledge of GST and its provisions

|       |     |     |     | <b>21C4</b> | F7 - Co | ourse A | rticula | tion |     |      |      |      |
|-------|-----|-----|-----|-------------|---------|---------|---------|------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5     | PO6     | PO7     | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 1   | 2   | 1           | 2       | 1       | 1       | 2    | 2   | 2    | 2    | 2    |
| CO2   | 3   | 1   | 3   | 3           | 3       | 1       | 1       | 3    | 2   | 3    | 3    | 2    |
| CO3   | 3   | 1   | 3   | 3           | 3       | 1       | 1       | 3    | 2   | 3    | 3    | 2    |
| CO4   | 3   | 1   | 3   | 1           | 3       | 1       | 1       | 3    | 2   | 2    | 3    | 2    |
| CO5   | 3   | 1   | 2   | 1           | 1       | 1       | 1       | 3    | 2   | 2    | 3    | 2    |
| W.A   | 3   | 1   | 2.6 | 1.8         | 2.4     | 1       | 1       | 2.8  | 2   | 2.4  | 2.8  | 2    |

## **ELECTIVE GROUP 8 - HUMAN RESOURCE MANAGEMENT**

## 21C4H4 - STRATEGIC HUMAN RESOURCE MANAGMENT

## **COURSE OUTCOMES:**

**CO1** - Recognize the fundamentals of SHRM framework and analyze the overall role of SHRM in business.

CO2 - Compute the strategic planning for Human resource.

- CO3 Design the training program strategically as required for organization.
- CO4 Design and implement compensation packages for human resource.
- CO5 Gain insights on various operations of HRM at International level.

|       |     |     |     | 21C4 | H4 - C | ourse A | Articula | ation |     |      |      |      |
|-------|-----|-----|-----|------|--------|---------|----------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4  | PO5    | PO6     | PO7      | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 3   | 2   | 2    | 3      | 3       | 2        | 2     | 2   | 1    | 3    | 3    |
| CO2   | 2   | 3   | 2   | 3    | 2      | 2       | 2        | 3     | 2   | 1    | 2    | 3    |
| CO3   | 2   | 3   | 2   | 3    | 3      | 2       | 2        | 3     | 1   | 1    | 1    | 2    |
| CO4   | 2   | 3   | 2   | 2    | 2      | 3       | 3        | 1     | 1   | 2    | 1    | 3    |
| CO5   | 2   | 3   | 3   | 3    | 2      | 2       | 2        | 3     | 1   | 1    | 1    | 2    |
| W.A   | 2   | 3   | 2.2 | 2.6  | 2.4    | 2.4     | 2.2      | 2.4   | 1.4 | 1.2  | 1.6  | 2.6  |

## 21C4H5 - INDUSTRIAL LABAOUR LEGISLATION

#### **COURSE OUTCOMES:**

CO1 - Recognize the existing provisions provided under Factories Act.

CO2 - Assess the provisions under Industrial Disputes Act.

CO3 - Gain insights on payment of Gratuity Act.

**CO4** - Analyze the provisions under employees' Provident Fund and Workmen's Compensation Act.

|       |     |     |     | <b>21C4</b> | H5 - C | ourse A | Articula | ation |     |      |      |      |
|-------|-----|-----|-----|-------------|--------|---------|----------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3 | PO4         | PO5    | PO6     | PO7      | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 2   | 3   | 3   | 3           | 2      | 2       | 3        | 2     | 3   | 1    | 2    | 1    |
| CO2   | 2   | 2   | 2   | 3           | 3      | 3       | 3        | 3     | 1   | 2    | 3    | 3    |
| CO3   | 2   | 3   | 3   | 3           | 3      | 2       | 2        | 2     | 1   | 3    | 3    | 3    |
| CO4   | 2   | 1   | 3   | 2           | 3      | 3       | 2        | 2     | 3   | 3    | 2    | 3    |
| CO5   | 2   | 2   | 3   | 3           | 2      | 2       | 3        | 3     | 2   | -    | 1    | 3    |
| W.A   | 2   | 2.2 | 2.8 | 2.8         | 2.6    | 2.4     | 2.6      | 2.4   | 2   | 1.8  | 2.2  | 2.6  |

CO5 - Recognize the ILO deliberations and code of discipline in industries.

## 21C4H6 - INDUSTRIAL RELATIONS

### **COURSE OUTCOMES:**

**CO1** - To familiarize with the role of management and unions in the promotions of industrial relations.

CO2 - Be acquainted with the concepts, principles and issues connected with trade unions.

|       |     |     |      | <b>21C4</b> | H6 - C | ourse A | rticula | ntion |     |      |      |      |
|-------|-----|-----|------|-------------|--------|---------|---------|-------|-----|------|------|------|
| PO/CO | PO1 | PO2 | PO3  | PO4         | PO5    | PO6     | PO7     | PO8   | PO9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 2   | 3    | 2           | -      | 3       | -       | 3     | 3   | -    | 2    | -    |
| CO2   | 3   | -   | 2    | -           | 3      | 3       | -       | 2     | -   | -    | -    | -    |
| CO3   | 3   | 3   | 3    | 1           | 3      | 3       | 1       | 2     | 3   | 3    | 2    | -    |
| W.A   | 3   | 2.5 | 2.67 | 1.5         | 3      | 3       | 1       | 2.33  | 3   | 3    | 2    | -    |

CO3 - Be acquainted with the concepts, principles connected with collective bargaining.

## 21C4H7 - MANAGING KNOWLEDGE WORKER

CO1 - Recognize the significance of knowledge workers in an organization

CO2 - Gain knowledge on effective harnessing of organizational knowledge

CO3 - Identify the role of knowledge leader in achieving team goals

CO4 - Realize the association between knowledge management and HRM practices

|       |     |      |     | 21C4 | H7 - C | ourse A | rticula | tion |      |      |      |      |
|-------|-----|------|-----|------|--------|---------|---------|------|------|------|------|------|
| PO/CO | PO1 | PO2  | PO3 | PO4  | PO5    | PO6     | PO7     | PO8  | PO9  | PO10 | PO11 | PO12 |
| CO1   | -   | 3    | 2   | 1    | -      | 2       | -       | -    | 3    | 2    | 2    | -    |
| CO2   | 2   | 3    | 2   | 2    | -      | 2       | 2       | -    | 3    | 1    | -    | 1    |
| CO3   | 3   | 1    | -   | -    | -      | -       | -       | -    | 3    | -    | 3    | 2    |
| CO4   | 3   | 2    | -   | -    | -      | -       | -       | -    | -    | -    | 2    | 1    |
| W.A   | 2   | 2.25 | 1   | 0.75 | -      | 1       | 0.5     | -    | 2.25 | 0.75 | 1.75 | 1    |

## 21C402 - PROJECT WORK

CO1 - Improve students research and personal skills

**CO2** - Upgrade students experience of practical work there by enhancing professional growth and experience

CO3 - Creating valuable employees and competent job applicants to the companies

|       |      |      |      | 21C4 | 02 - C | ourse A | Articula | ation |      |      |      |      |
|-------|------|------|------|------|--------|---------|----------|-------|------|------|------|------|
| PO/CO | PO1  | PO2  | PO3  | PO4  | PO5    | PO6     | PO7      | PO8   | PO9  | PO10 | PO11 | PO12 |
| CO1   | 3    | 2    | 3    | 3    | 3      | 2       | 3        | 1     | 3    | 2    | 3    | 2    |
| CO2   | 2    | 3    | 2    | 2    | 3      | 2       | 2        | 2     | 2    | 2    | 3    | 3    |
| W.A   | 1.67 | 1.67 | 1.33 | 2.00 | 2.00   | 1.33    | 1.67     | 1.33  | 1.67 | 1.67 | 2.0  | 1.67 |

SBRR Mahajana First Grade College (Autonomous), PG Wing Pooja Bhagavat Memorial Mahajana Education Centre KRS Road, Metagalli, Mysuru-570016

# Master of Computer Application 2022-2023

## Programme Outcomes

**PO1:** Use emerging tools, techniques and skills necessary for computing in the real world.

**PO2:** Identify, formulate and solve complex computing problems to achieve substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domains.

**PO3:** Analyse problems, suggest appropriate solutions and justify propositions for effective decision making in the professional field.

**PO 4:** Develop strong critical thinking skills to assess why certain solutions might not work and to save time incoming up with the right approach in the field of computing.

**PO 5:** Create, select and apply appropriate techniques and latest Information Technology tools to forecast an outcome by utilizing data that is available.

**PO 6:** Understand and assess societal, environmental, health, safety,legal, and cultural issueswithin local and global contexts, and the consequential responsibilities relevant to professional computing practices.

**PO7:** Develop and imbibe the principles of ethics and values in profession.

**PO8:** Communicate effectively and efficiently as an individual, and as a member, or leader to present the technical knowledge in multi-disciplinary settings.

**PO9:** Study and review literature, reports prepare documentation and make inferences to design better systems.

PO10: Recognize and realize the need for, and develop an ability to engage in lifelong learning.

SBRR Mahajana First Grade College(Autonomous), PGWing

Pooja Bhagavat Memorial Mahajana Education Centre

KRS Road, Metagalli, Mysuru-570016

## Master of Computer Application

## Programme Structure & Syllabus

## w.e.f.2022-2023

## List of Hard Core Courses

| Sl.No. | Course Title                                          | Cre | dit Pat | tern |         |             |
|--------|-------------------------------------------------------|-----|---------|------|---------|-------------|
|        |                                                       | L   | Т       | Р    | Credits | Course Code |
| 1      | Mathematical Foundations for<br>Computer Applications | 4   | 0       | 0    | 4       | 22BH01      |
| 2      | Advanced Computer Networks                            | 3   | 1       | 0    | 4       | 22BH02      |
| 3      | Data Structures and<br>Algorithms                     | 3   | 0       | 1    | 4       | 22BH03      |
| 4      | Operating System                                      | 3   | 1       | 0    | 4       | 22BH04      |
| 5      | Software Engineering                                  | 3   | 1       | 0    | 4       | 22BH05      |
| 6      | Object Oriented<br>Programming with Java              | 3   | 0       | 1    | 4       | 22BH06      |
| 7      | Python Programming                                    | 3   | 0       | 1    | 4       | 22BH07      |
| 8      | Minor Project                                         | 0   | 1       | 3    | 4       | 22BH08      |
| 9      | Dissertation Work                                     | 0   | 2       | 10   | 12      | 22BH09      |

## List of Soft Core Courses

| <b>Sl.No.</b> | <b>Course Title</b>                            | Cre | edit Pat | ttern | Cuclita | Contract  |
|---------------|------------------------------------------------|-----|----------|-------|---------|-----------|
|               |                                                | L   | Т        | Р     | Credits | Course Co |
| 1             | Data Communication and Networks                | 3   | 1        | 0     | 4       | 22BS01    |
| 2             | Advanced Database Management<br>System         | 3   | 0        | 1     | 4       | 22BS02    |
| 3             | Cloud Computing                                | 4   | 0        | 0     | 4       | 22BS03    |
| 4             | System Analysis and Design                     | 3   | 1        | 0     | 4       | 22BS04    |
| 5             | Web Technologies                               | 2   | 1        | 1     | 4       | 22BS05    |
| 6             | Cryptography and Network Security              | 3   | 1        | 0     | 4       | 22BS06    |
| 7             | Theory of Languages and Automata               | 3   | 0        | 1     | 4       | 22BS07    |
| 8             | Probability and Statistics                     | 3   | 1        | 0     | 4       | 22BS08    |
| 9             | Fundamentals of Internet of Things             | 3   | 1        | 0     | 4       | 22BS09    |
| 10            | Mobile Application Development with<br>Android | 3   | 0        | 1     | 4       | 22BS10    |
| 11            | Linux Programming                              | 3   | 0        | 1     | 4       | 22BS11    |
| 12            | Information Retrieval                          | 3   | 0        | 1     | 4       | 22BS12    |
| 13            | Big Data Analytics                             | 3   | 0        | 1     | 4       | 22BS13    |
| 14            | Machine Learning using Python                  | 3   | 0        | 1     | 4       | 22BS14    |
| 15            | Advanced Java                                  | 3   | 0        | 1     | 4       | 22BS15    |
| 16            | Management Information Systems                 | 3   | 1        | 0     | 4       | 22BS16    |
| 17            | Business Intelligence                          | 3   | 1        | 0     | 4       | 22BS17    |
| 18            | Entrepreneurship Development                   | 3   | 1        | 0     | 4       | 22BS18    |
| 19            | Communication Skills                           | 3   | 1        | 0     | 4       | 22BS19    |
| 20            | Professional Ethics and Human Values           | 3   | 1        | 0     | 4       | 22BS20    |
| 21            | Cyber security                                 | 3   | 1        | 0     | 4       | 22BS21    |
| 22            | Simulation and Modeling                        | 3   | 0        | 1     | 4       | 22BS22    |
| 23            | Artificial Intelligence                        | 3   | 1        | 0     | 4       | 22BS23    |

## Listof Open Elective Courses

| Sl.No. | Course Title      | Cre | dit Pat | tern | Credits | Course Code |
|--------|-------------------|-----|---------|------|---------|-------------|
|        |                   | L   | Т       | Р    | cicuits | Course coue |
| 1      | World Wide Web    | 3   | 1       | 0    | 4       | 22BE01      |
| 2      | E-Commerce        | 3   | 1       | 0    | 4       | 22BE02      |
| 3      | Office Automation | 3   | 1       | 0    | 4       | 22BE03      |

•

## MATHEMATICAL FOUNDATIONS FOR COMPUTER APPLICATIONS

## **Outcomes:**

HC

- Develop an ability to implement various techniques of mathematical logic.
- Capability to apply the concepts of set theory.
- Ability to enhance the knowledge of algebraic structures towards computer applications.
- Ability to correlate the concepts of graph theory in computer applications.

|                     |      |      | (    | Course a | rticulat | ion mat | rix:        |     |      |              |
|---------------------|------|------|------|----------|----------|---------|-------------|-----|------|--------------|
| РО                  | DO 1 | DO 2 | DO 3 | PO 4     | DO 5     |         | <b>DO 7</b> |     | DO 0 | <b>DO 10</b> |
| CO                  | FUT  | FU 2 | 103  | FU 4     | FU 5     | FUO     | FU /        | FUO | FU 9 | FO 10        |
| CO1                 | 3    | 3    | 3    | 2        | 1        | 1       | 1           | -   | 1    | 2            |
| CO2                 | 3    | 3    | 3    | 2        | 1        | 1       | -           | -   | 1    | 2            |
| CO3                 | 3    | 3    | 3    | 2        | 2        | 1       | -           | -   | 1    | 1            |
| CO4                 | 3    | 3    | 3    | 3        | 2        | 1       | 1           | 3   | 1    | 2            |
| Weighted<br>Average | 3    | 3    | 3    | 2.25     | 1.5      | 1       | 1           | 3   | 1    | 1.75         |

1: Low, 2: Moderate, 3: High

## ADVANCED COMPUTER NETWORKS

3:1:0

## **Outcomes:**

HC

- To employ the mechanism of Reference models and TCP/IP.
- To understand the role of Transport Layer in computer networks.
- Employ the techniques of TCP/IP.
- Comprehend the internal working mechanism of IPSecurity.

|                     |      |      |      | Course | articulat   | ion mat | rix:        |             |      |              |
|---------------------|------|------|------|--------|-------------|---------|-------------|-------------|------|--------------|
| РО                  | DO 1 | DO 1 | DO 3 | DO 4   | <b>DO 5</b> | DO 6    | <b>PO 7</b> | <b>DO 9</b> |      | <b>PO 10</b> |
| СО                  | FUT  | FU 2 | FU 3 | FU 4   | FU 5        | FUO     | FU /        | FUð         | FU 9 | FO 10        |
| CO1                 | 3    | 2    | 2    | 2      | 2           | 1       | -           | 1           | 1    | 2            |
| CO2                 | 3    | 2    | 2    | 2      | 2           | 1       | 1           | 1           | 1    | 2            |
| CO3                 | 2    | 2    | 2    | 2      | 1           | 2       | 1           | 1           | 1    | 2            |
| <b>CO4</b>          | 3    | 3    | 3    | 2      | 2           | 2       | 1           | 1           | 2    | 2            |
| Weighted<br>Average | 2.75 | 2.25 | 2.25 | 2      | 1.75        | 1.5     | 1           | 1           | 1.25 | 1.5          |

1: Low, 2: Moderate, 3: High

4:0:0

#### DATA STRUCTURES AND ALGORITHMS

**Outcomes:** 

- Analyse algorithms and algorithm correctness.
- Summarize searching and sorting techniques.
- Describe stack, queue and linked list operation.
- Solve the problems by writing algorithms using fundamental data structures.

|                     |      |      |      | Course a | articulat | ion mat | rix:        |     |      |              |
|---------------------|------|------|------|----------|-----------|---------|-------------|-----|------|--------------|
| РО                  | DO 1 | DO 1 | DO 3 | DO 4     | DO 5      | DO 6    | <b>PO 7</b> |     |      | <b>DO 10</b> |
| CO                  | FUT  | FU 2 | 103  | FU 4     | FU 5      | FUO     | FU /        | FUð | FO 9 | FO 10        |
| CO1                 | 2    | 3    | 3    | 2        | 1         |         |             | -   | 1    | 3            |
| CO2                 | 3    | 2    | 2    | 2        | 3         | -       | -           |     | -    | 1            |
| CO3                 | 3    | 2    | 2    | 2        | 2         | -       | -           | -   | -    | 1            |
| <b>CO4</b>          | 2    | 3    | 2    | 2        | 2         | 1       | 2           | 1   | 1    | 1            |
| Weighted<br>Average | 2.5  | 2.5  | 2.25 | 2        | 2         | 1       | 2           | 1   | 1    | 1.5          |

1: Low, 2: Moderate, 3: High

## HC

#### **OPERATING SYSTEM**

3:1:0

Outcomes

- Understand the usage of the operating system components and its services.
- Employ the concepts of process management.
- Employ the concepts of Memory Management
- Apply the file handling concepts in OS perspective.

|                     |     |      |     | Course a | rticulatio | on matrix | <b>K:</b> |     |     |             |
|---------------------|-----|------|-----|----------|------------|-----------|-----------|-----|-----|-------------|
| РО                  | DOI | DOA  | DOA | DOL      |            | DOC       |           | DOG | DOG | <b>DO10</b> |
| СО                  | POI | PO2  | PO3 | PO4      | P05        | PO6       | PO7       | PO8 | PO9 | PO10        |
| CO1                 | 1   | 2    | 1   | -        | -          |           | -         | 3   | 2   | 1           |
| CO2                 | -   | 3    | 1   | 2        | -          | -         | -         | 3   | 2   | 1           |
| CO3                 | -   | 3    | 1   | 2        | -          | -         | -         | 3   | 2   | 1           |
| CO4                 | 1   | 3    | 1   | 2        | 2          | 2         | 2         | 3   | 2   | 1           |
| Weighted<br>Average | 1   | 2.75 | 1   | 2        | 2          | 2         | 2         | 3   | 2   | 1           |

1: Low, 2: Moderate, 3: High

## HC

#### SOFTWARE ENGINEERING

3:1:0

#### Outcomes

- Gain an understanding to work in one or more significant application domains.
- Develop an ability to work as an individual and as part of a multidisciplinary team to develop and deliver quality software.
- Demonstrate an understanding of and apply the current theories, models, and techniques that provide a basis for the software lifecycle.
- Demonstrate an ability to ensure Software Quality Assurance.

HC

3:0:1

|                     |             |      |      | Course a    | articulati | ion matr | ix:  |      |      |               |
|---------------------|-------------|------|------|-------------|------------|----------|------|------|------|---------------|
| РО                  | <b>PO 1</b> | PO 2 | PO 3 | <b>PO</b> 4 | PO 5       | PO 6     | PO 7 | DO 8 | PO 0 | <b>DO 1</b> 0 |
| CO                  | 101         | 102  | 105  | 104         | 103        | 100      | 107  | 100  | 109  | 1010          |
| CO1                 | 3           | 1    | 2    | 2           | 2          | 1        | 2    | 1    | 3    | 2             |
| CO2                 | 2           | 1    | 2    | 2           | 2          | 1        | 1    | 1    | 2    | 1             |
| CO3                 | 2           | 2    | 3    | 2           | 3          | 1        | 1    | 1    | 2    | 1             |
| CO4                 | 2           | 1    | 2    | 2           | 1          | 1        | 2    | 1    | 2    | 2             |
| Weighted<br>Average | 2.25        | 1.25 | 2.25 | 2           | 2          | 1        | 1.5  | 1    | 2.25 | 1.5           |

1: Low, 2: Moderate, 3: High

## **OBJECT ORIENTED PROGRAMMING WITH JAVA**

3:0:1

#### **Outcomes:**

HC

Use the syntax and semantics of java programming language and basic concepts of OOP. •

- Apply the class fundamentals, arrays, inheritance and polymorphism to develop reusable ٠ programs.
- Apply the concepts of packages, interfaces and exception handling to develop efficient ٠ and error free codes.
- Build applications using the concepts of multi threading and files. ٠

|                     |             |      |      | Course | ui ticuiu    | uon ma |             |     |      |              |
|---------------------|-------------|------|------|--------|--------------|--------|-------------|-----|------|--------------|
| PO                  | <b>DO 1</b> |      |      |        | DO 5         |        | <b>DO 7</b> |     |      | <b>DO 10</b> |
| СО                  | FUT         | FU 2 | FO 3 | FU 4   | F <b>U</b> 5 | FUO    | FO /        | FUð | FO 9 | FO 10        |
| CO1                 | 3           | 2    | 2    | 1      | 1            | 1      | -           | -   | -    | -            |
| CO2                 | 3           | 2    | 3    | 3      | 1            | -      | -           | -   | -    | -            |
| CO3                 | 3           | 3    | 3    | 3      | 1            | -      | -           | -   | -    | -            |
| CO4                 | 3           | 2    | 1    | 1      | 1            | -      | 2           | 2   | 2    | 2            |
| Weighted<br>Average | 3           | 2.25 | 2.25 | 2      | 1            | 1      | 2           | 2   | 2    | 2            |

**Course articulation matrix:** 

1: Low, 2: Moderate, 3: High

## HC

#### **PYTHON PROGRAMMING**

3:0:1

**Outcomes:** 

- Develop algorithmic solutions to simple computational problems. •
- Read, write, execute by hand simple Python programs. •
- Structures implement Python programs for solving problems. •
- Decompose a Python program into functions.

|              |              |             | _       |      | Course | articulat | ion mat | rix: |      |      |       |
|--------------|--------------|-------------|---------|------|--------|-----------|---------|------|------|------|-------|
| PO           |              | <b>PO 1</b> | PO 2    | PO 3 | PO 4   | PO 5      | PO 6    | PO 7 | PO 8 | PO 0 | PO 10 |
| CO           | )            | 101         | 102     | 105  | 104    | 103       | 100     | 107  | 100  | 109  | 1010  |
| CC           | )1           | 2           | 2       | 2    | 2      | 2         | 1       | 1    | -    | -    | 2     |
| CC           | )2           | 2           | 2       | 2    | 2      | 2         | 1       | 1    | -    | -    | 1     |
| CC           | )3           | 3           | 2       | 2    | 1      | 2         | -       | -    | 1    | 1    | 1     |
| CC           | )4           | 3           | 2       | 2    | 2      | 2         | -       | -    | -    | -    | 1     |
| Weig<br>Avei | hted<br>rage | 2.5         | 2       | 2    | 1.75   | 2         | 1       | 1    | 1    | 1    | 1.25  |
| 1: Low,      | 2: Mo        | derate,     | 3: High |      |        |           |         |      |      |      |       |

### **MINOR PROJECT**

## **Outcomes:**

HC

- Understanding the emerging trends of new technologies by conducting a survey of several available literature in the preferred field of study.
- Develop real time Projects by comparing the several existing solutions for a research challenge.
- Demonstrate an ability to work in teams and manage the process of building the project within the stipulated time.
- Report and present the findings of the research study/project conducted in the preferred domain.

| РО                  | DO1 |     |     | DO 4 | DOS |     | DO7 | DOP | DOO | <b>DO10</b> |
|---------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|-------------|
| CO                  | PUI | POZ | POS | PO4  | P05 | PUo | P07 | PUð | P09 | POIU        |
| CO1                 | -   | -   | 3   | -    | 2   | 2   | 2   | -   | -   | 3           |
| CO2                 | 3   | -   | -   | 3    | 2   | 2   | 2   | -   | -   | 3           |
| CO3                 | -   | -   | -   | -    | 2   | 2   | 2   | 3   | -   | 3           |
| CO4                 | -   | 3   | -   | -    | 2   | 2   | 2   | -   | 3   | 3           |
| Weighted<br>Average | 3   | 3   | 3   | 3    | 2   | 2   | 2   | 3   | 3   | 3           |

#### **Course articulation matrix:**

1: Low, 2: Moderate, 3: High

HC

## **DISSERTATION WORK**

0:2:10

## **Outcomes:**

- Develop basic algorithm steps as a solution to a real-life problem.
- Implement algorithms using latest tools that contribute to the software solution of the project using different tools.
- Analyse, interpret, test and validate experimental results.
- Develop research/technical report with enhanced writing/ communication skills following ethical practices.

| РО                  | DO1 | <b>DO</b> | DO3 | DO4 | DO5 | BOG | DO7 | DO9 | DOD | <b>BO10</b> |
|---------------------|-----|-----------|-----|-----|-----|-----|-----|-----|-----|-------------|
| СО                  | POI | POZ       | POS | PO4 | P05 | PU0 | PO/ | PUð | PO9 | POIU        |
| CO1                 | -   | 3         | 3   | 2   | -   | 2   | -   | -   | -   | 3           |
| CO2                 | 3   | 3         | 3   | 2   | 3   | 2   | -   | -   | -   | 3           |
| CO3                 | I   | -         | 3   | 2   | -   | 2   | -   | -   | 3   | 3           |
| CO4                 | -   | -         | -   | -   | -   | 2   | 3   | 2   | 3   | 3           |
| Weighted<br>Average | 3   | 3         | 3   | 2   | 3   | 2   | 3   | 2   | 3   | 3           |

#### **Course articulation matrix:**

1: Low, 2: Moderate, 3: High

0:1:3

## **DATA COMMUNICATION AND NETWORKS**

#### **Outcomes:**

- Understand and implement various types of transmissions in wired and wireless communications
- Study and develop the aspects of communication channels of Data Link Layer.
- Understand Design & apply various routing protocols of the Networks Layer.
- Design applications using the protocols of Transport & application Layer.

## **Course articulation matrix:**

| PO       | PO1 | POI | PO3 | PO4 | PO5 | PO6 | PO7 | POS | POO | <b>PO10</b> |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| CO       | TOI | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 109 | 1010        |
| CO1      | -   | -   | 3   | -   | -   | -   | -   | 2   | -   | 2           |
| CO2      | -   | -   | 3   | -   | -   | -   | -   | 2   | -   | 1           |
| CO3      | 3   | 2   | -   | 3   | -   | 2   | -   | 2   | -   | 3           |
| CO4      | 3   | 2   | -   | 3   | 3   | -   | 3   | 2   | 3   | 3           |
| Weighted |     |     |     |     |     |     |     |     |     |             |
| Average  | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 2.25        |

1: Low, 2: Moderate, 3: High

## SC ADVANCED DATABASE MANAGEMENT SYSTEM

#### **Outcomes:**

#### • Determine the basic concepts, E-R Mapping and SQL basic commands.

- Demonstrate the techniques of SQL, FD and Normalization.
- Develop Indexing, ACID and Transaction.
- Describe NoSQL database and Postgre SQL.

#### **Course articulation matrix:**

| PO                  | DO1  | PO2  | PO3 |      | PO5  | POG  | PO7 | DOS | POO | <b>DO10</b> |
|---------------------|------|------|-----|------|------|------|-----|-----|-----|-------------|
| СО                  | FUI  | F02  | 103 | 104  | 105  | FOO  | FO/ | 100 | 109 | 1010        |
| CO1                 | 2    | 2    | 2   | 1    | 1    | -    | -   | -   | -   | -           |
| CO2                 | 2    | 3    | 3   | 2    | 1    | 1    | -   | -   | -   | -           |
| CO3                 | 3    | 3    | 3   | 2    | 2    | 1    | 2   | 1   | 1   | 1           |
| CO4                 | 2    | 3    | 2   | 2    | 3    | 2    | 2   | -   | 1   | 2           |
| Weighted<br>Average | 2.25 | 2.75 | 2.5 | 1.75 | 1.75 | 1.33 | 2   | 1   | 1   | 1.5         |

#### 1: Low, 2: Moderate, 3: High

## **CLOUD COMPUTING**

4:0:0

3:0:1

#### **Outcomes:**

SC

- Demonstrate the main concepts, key technologies, strengths, and limitations of cloud computing and the possible applications.
- Identify the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS, public cloud, private cloud.
- Identify the cloud services for the individuals.
- Acquire the knowledge on the core issues of cloud computing such as security, privacy, and interoperability.

3:1:0

SC

|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rticulati                                                                                               | on matri                                                                                | <b>X:</b>                                                                  |                                          |                                                                |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|-------------|
| РО                                                                                                                                                | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO2                                                                                    | PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PO5                                                                                                     | PO6                                                                                     | PO7                                                                        | PO8                                      | PO9                                                            | PO1         |
| CO                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                                                         |                                                                            |                                          |                                                                |             |
| CO1                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                       | 3                                                                                       | 2                                                                          | 3                                        | 3                                                              | 3           |
| CO2                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                       | 3                                                                                       | 2                                                                          | 2                                        | 2                                                              | 2           |
| CO3                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                       | 1                                                                                       | 1                                                                          | 2                                        | 2                                                              | 2           |
| CO4                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                       | 1                                                                                       | 1                                                                          | 2                                        | -                                                              | 1           |
| Weighted<br>Average                                                                                                                               | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                      | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.25                                                                                                    | 2                                                                                       | 1.5                                                                        | 2.25                                     | 2.33                                                           | 2           |
| Low, 2: Mo                                                                                                                                        | derate, l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3: High                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                                                         |                                                                            |                                          |                                                                |             |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                      | SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSIS AN                                                                                                 | D DESI                                                                                  | GN                                                                         |                                          | 3                                                              | 6:1:0       |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | DLDI                                                                                    | UIN                                                                        |                                          | •                                                              |             |
| tcomes:                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | D DLOI                                                                                  | GIV                                                                        |                                          | C                                                              |             |
| tcomes:<br>• Gather d                                                                                                                             | lata for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nalysis a                                                                              | nd specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fy the req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uirement                                                                                                | s of a sys                                                                              | stem.                                                                      |                                          | c                                                              | ••••        |
| tcomes:<br>Gather d Design s                                                                                                                      | lata for a<br>system co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysis a                                                                              | nd specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ty the req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uirement<br>nts.                                                                                        | s of a sys                                                                              | stem.                                                                      |                                          |                                                                |             |
| <ul><li>tcomes:</li><li>Gather d</li><li>Design s</li><li>Build ge</li></ul>                                                                      | lata for a<br>system co<br>neral and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nalysis a<br>omponen<br>d detaileo                                                     | nd specif<br>ts and en<br>d models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ty the requirements of the test of    | uirement<br>nts.<br>st program                                                                          | s of a sys                                                                              | impleme                                                                    | enting a s                               | ystem.                                                         |             |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a                                                                                           | lata for a<br>system co<br>meral and<br>user int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nalysis a<br>omponen<br>d detailec<br>erface fo                                        | nd specif<br>its and en<br>d models<br>or data inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ty the required that assistent of the second    | uirement<br>nts.<br>st program<br>utput, as                                                             | s of a sys<br>nmers in<br>well as c                                                     | impleme<br>ontrols to                                                      | enting a s                               | ystem.<br>the system                                           | m and       |
| <ul> <li>tcomes:</li> <li>Gather d</li> <li>Design s</li> <li>Build ge</li> <li>Design a<br/>its data.</li> </ul>                                 | lata for a<br>system co<br>neral and<br>user int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nalysis a<br>omponen<br>d detailec<br>erface fo                                        | nd specif<br>its and en<br>d models<br>or data inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ty the requironment<br>that assistent and o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uirement<br>nts.<br>st program<br>utput, as                                                             | s of a sys<br>mmers in<br>well as c                                                     | impleme<br>ontrols to                                                      | enting a s                               | ystem.<br>the system                                           | m and       |
| <ul> <li>tcomes:</li> <li>Gather d</li> <li>Design s</li> <li>Build ge</li> <li>Design a<br/>its data.</li> </ul>                                 | lata for a<br>system co<br>neral and<br>user int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nalysis a<br>omponen<br>d detailec<br>ærface fo                                        | nd specif<br>its and en<br>d models<br>or data inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ty the requironment<br>that assist<br>out and o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uirement<br>nts.<br>st progran<br>utput, as<br><b>rticulati</b>                                         | s of a sys<br>mmers in<br>well as c<br>on matri                                         | impleme<br>ontrols to                                                      | enting a s<br>o protect                  | ystem.<br>the system                                           | m and       |
| <ul> <li>tcomes:</li> <li>Gather d</li> <li>Design s</li> <li>Build ge</li> <li>Design a<br/>its data.</li> </ul>                                 | lata for a<br>system co<br>meral and<br>user int<br><b>PO1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalysis a<br>omponen<br>d detailec<br>erface fo<br><b>PO2</b>                          | nd specif<br>its and en<br>d models<br>or data inj<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ty the requironment<br>that assist<br>out and o<br>Course a<br>PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5                                         | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6                                  | impleme<br>ontrols to<br>ix:<br>PO7                                        | enting a s<br>o protect<br><b>PO8</b>    | ystem.<br>the system                                           | m and       |
| <ul> <li>tcomes:</li> <li>Gather d</li> <li>Design s</li> <li>Build ge</li> <li>Design a<br/>its data.</li> </ul> PO CO CO1                       | lata for a cystem conneral and user int<br>PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalysis a<br>omponen<br>d detailec<br>erface fo<br>PO2<br>-                            | nd specif<br>its and en<br>d models<br>or data inj<br>PO3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ty the requironment of that assistent and of the requirement of the re    | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5                                         | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6                                  | impleme<br>ontrols to<br>ix:<br>PO7<br>2                                   | enting a s<br>o protect<br>PO8<br>-      | ystem.<br>the system<br>PO9<br>3                               | m and       |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO1<br>CO2                                                    | lata for a system coneral and user int PO1 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalysis a<br>omponen<br>d detailec<br>erface fo<br>PO2<br>-                            | nd specif<br>its and en<br>d models<br>or data inj<br>PO3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ty the requironment<br>that assistent and o<br>Course a<br>PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2                               | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2                        | stem.<br>impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>-                     | enting a s<br>o protect<br>PO8<br>-<br>3 | ystem.<br>the system<br>PO9<br>3<br>3                          | m and       |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO<br>CO1<br>CO2<br>CO3                                       | ata for a system coneral and user international properties of the system | nalysis a<br>omponen<br>d detailec<br>ærface fo<br>PO2<br>-<br>-<br>-                  | nd specif<br>its and en<br>d models<br>or data inp<br>PO3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ty the requironment<br>that assistent and o<br>Course a<br>PO4<br>-<br>-<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2<br>-                          | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2<br>-                   | stem.<br>impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>-<br>2                | PO8 - 3 3                                | ystem.<br>the system<br>PO9<br>3<br>3<br>3<br>3                | m and       |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO<br>CO1<br>CO2<br>CO3<br>CO4                                | PO1 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis a<br>omponen<br>d detailec<br>cerface fo<br>PO2<br>-<br>-<br>-<br>3            | nd specifits and en d models or data inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ty the requironment that assisted and one of the requirement of the re    | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2<br>-<br>2<br>-<br>2           | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2<br>-<br>2<br>-<br>2    | impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>-<br>2<br>2<br>2               | PO8 - 3 3 3 3                            | ystem.<br>the system<br>PO9<br>3<br>3<br>3<br>3<br>3           | m and       |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO1<br>CO2<br>CO3<br>CO4<br>Weighted<br>Average               | PO1 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nalysis a<br>omponen<br>d detailec<br>cerface fo<br>PO2<br>-<br>-<br>3<br>3<br>3       | nd specifits and endels or data inperiod ata | Ty the requironment that assisted and one of the requirement of the re    | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2<br>-<br>2<br>2<br>2<br>2      | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2<br>-<br>2<br>2<br>2    | impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>2<br>2<br>2<br>2               | PO8 - 3 3 3 3 3                          | ystem.<br>the system<br>PO9<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | m and       |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>C             | PO1<br>3<br>3<br>3<br>3<br>4<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nalysis a<br>omponen<br>d detailec<br>eerface fo<br>PO2<br>-<br>-<br>3<br>3<br>3: High | nd specifits and end models or data inperiod ata inperiod | Ty the requironment<br>that assistent and or<br><b>Course a</b><br><b>PO4</b><br>-<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2<br>-<br>2<br>2<br>2           | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2<br>-<br>2<br>2<br>2    | stem.<br>impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>2<br>2<br>2<br>2<br>2 | PO8 3 3 3 3 3                            | ystem.<br>the system<br>PO9<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | m and PO    |
| tcomes:<br>Gather d<br>Design s<br>Build ge<br>Design a<br>its data.<br>PO<br>CO<br>CO1<br>CO2<br>CO3<br>CO4<br>Weighted<br>Average<br>Low, 2: Mo | PO1<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nalysis a<br>omponen<br>d detailec<br>eerface fo<br>PO2<br>-<br>-<br>3<br>3<br>3: High | nd specif<br>its and en<br>d models<br>or data inp<br>PO3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ty the requironment<br>that assisted and or that assisted and or the second | uirement<br>nts.<br>st program<br>utput, as<br>rticulati<br>PO5<br>-<br>2<br>-<br>2<br>2<br>-<br>2<br>- | s of a sys<br>mmers in<br>well as c<br>on matri<br>PO6<br>-<br>2<br>-<br>2<br>2<br>SIES | impleme<br>ontrols to<br>ix:<br>PO7<br>2<br>2<br>2<br>2<br>2               | PO8<br>-<br>3<br>3<br>3<br>3             | ystem.<br>the system<br>PO9<br>3<br>3<br>3<br>3<br>3<br>2<br>2 | m and<br>PO |

- Able to extend Java Script to validate a form with event handler for a given problem.
- Able to develop websites using web frameworks and content management systems

|                     |      |      | (   | Course ai | rticulatio | on matrix | K:  |     |      |             |
|---------------------|------|------|-----|-----------|------------|-----------|-----|-----|------|-------------|
| PO                  | DO1  | DOJ  | DO3 | DO4       | DO5        | DOG       | PO7 | DOS | DO0  | <b>DO10</b> |
| CO                  | FUI  | FO2  | 103 | FU4       | 105        | FOO       | 107 | FUo | 109  | FOIU        |
| <b>CO1</b>          | 2    | 2    | 3   | 2         | 2          | 2         | -   | 2   | 2    | 1           |
| <b>CO2</b>          | 3    | 3    | 3   | 3         | 3          | 2         | -   | 2   | 2    | 1           |
| CO3                 | 3    | 3    | 3   | 3         | 3          | 2         | -   | 2   | 2    | 2           |
| CO4                 | 3    | 3    | 3   | 3         | 3          | 3         | 2   | 2   | 3    | 3           |
| Weighted<br>Average | 2.75 | 2.75 | 3   | 2.75      | 2.75       | 2.25      | 2   | 2   | 2.25 | 1.75        |

1: Low, 2: Moderate, 3: High

## **CRYPTOGRAPHY AND NETWORK SECURITY**

#### **Outcomes:**

- Implement the principles and practices of cryptographic techniques.
- Build simple cryptosystems by applying encryption algorithms.
- Comprehend secure identity management (authentication), message authentication, and digital signature techniques.
- Employ the authentication protocol and web security methods.

|                     |             |      |      | Course | articulat | ion mau | 1    |      |      |       |
|---------------------|-------------|------|------|--------|-----------|---------|------|------|------|-------|
| РО                  | <b>PO 1</b> | PO 2 | PO 3 | PO 4   | PO 5      | PO 6    | PO 7 | PO 8 | PO 0 | PO 10 |
| CO                  | 101         | 102  | 105  | 104    | 103       | 100     | 107  | 100  | 109  | 1010  |
| CO1                 | 3           | 3    | 3    | 3      | 3         | 2       | -    | 1    | 2    | 3     |
| CO2                 | 3           | 3    | 3    | 3      | 3         | 2       | -    | 1    | 2    | 3     |
| CO3                 | 3           | 2    | 3    | 3      | 3         | 2       | 1    | 1    | 2    | 3     |
| <b>CO4</b>          | 3           | 2    | 3    | 3      | 3         | 3       | 1    | 1    | 2    | 3     |
| Weighted<br>Average | 3           | 2.5  | 3    | 3      | 3         | 2.25    | 1    | 1    | 2    | 3     |

**Course articulation matrix:** 

1: Low, 2: Moderate, 3: High

## THEORY OF LANGUAGES AND AUTOMATA

3:0:1

3:1:0

#### **Outcomes:**

SC

- Acquire a fundamental understanding of the core concepts in automata theory and formal languages.
- Design grammars and automata (recognizers) for different language classes.
- Identify formal language classes and prove language membership properties.
- Prove and disprove theorems establishing key properties of formal languages and automata.

|                     |             |      |      | Course a | articulat | tion mat | rix: |      |      |              |
|---------------------|-------------|------|------|----------|-----------|----------|------|------|------|--------------|
| РО                  | <b>DO 1</b> |      | DO 3 |          | PO 5      | PO 6     | PO 7 | DO 8 |      | <b>PO 10</b> |
| CO                  | FUT         | FO 2 | 103  | rU4      | FU 5      | FUO      | FU / | FUð  | FU 9 | FO IU        |
| CO1                 | 2           | 3    | 3    | 3        | 1         | -        | -    | -    | 2    | 2            |
| CO2                 | 2           | 3    | 3    | 3        | 1         | 2        | -    | 2    | 1    | 2            |
| CO3                 | 2           | 3    | 3    | 3        | 1         | -        | -    | -    | 1    | 2            |
| CO4                 | 2           | 3    | 3    | 3        | 1         | 2        | 2    | 2    | 1    | 2            |
| Weighted<br>Average | 2           | 3    | 3    | 3        | 1         | 2        | 2    | 2    | 1.25 | 2            |

1: Low, 2: Moderate, 3: High

#### PROBABILITY AND STATISTICS

**3:1:0**.

#### **Outcomes:**

SC

- Apply axioms and theorems to describe events and compute probabilities also identify the types of random variables and calculate relevant probabilities.
- Analyse the different Techniques in Continuous Probability Distribution.
- Describe an appropriate statistical model for the given data and compute population

SC

parameters using appropriate estimators.

• Describe the Tests of Hypotheses, Types of errors, test for Significance, regression and curve fitting

|                     |      |      |      |      | ii iicuiai | ion mau | 11.  |      |      |              |
|---------------------|------|------|------|------|------------|---------|------|------|------|--------------|
| PO                  | DO 1 | PO 1 | DO 3 | PO 4 | PO 5       | DO 6    | PO 7 | DO 9 |      | <b>DO 10</b> |
| CO                  | PUT  | PO 2 | PO 3 | PO 4 | PU 5       | PU 0    | FO / | PUð  | PO 9 | PO 10        |
| CO1                 | 2    | 3    | 3    | 2    | 3          | 1       | -    | -    | 2    | 2            |
| CO2                 | 2    | 3    | 3    | 3    | 3          | -       | 2    | -    | 2    | 2            |
| CO3                 | 2    | 3    | 3    | 3    | 3          | 1       | -    | -    | 1    | 2            |
| CO4                 | 2    | 3    | 3    | 3    | 3          | -       | 2    | 2    | 2    | 2            |
| Weighted<br>Average | 2    | 3    | 3    | 2.75 | 3          | 2       | 2    | 2    | 1.75 | 2            |

**Course articulation matrix:** 

1: Low, 2: Moderate, 3: High

## FUNDAMENTALS OF INTERNET OF THINGS

3:1:0

#### **Outcomes:**

SC

- Interpret the impact of IoT networks in new architectural models.
- Compare and contrast the deployment of smart objects and technologies to connect the mass network.
- Elaborate the need of IoT Access Technologies.
- Identify the application of IoT in Smart and Connected Cities and Public Safety.

|                     |      |      | (    | Course ai | rticulatio | on matrix | <b>K:</b> |      |      |       |
|---------------------|------|------|------|-----------|------------|-----------|-----------|------|------|-------|
| РО                  | PO 1 | PO 2 | PO 3 | PO 4      | PO 5       | PO 6      | PO 7      | PO 8 | PO 9 | PO 10 |
| CO                  | 101  | 102  | 105  | 104       | 105        | 100       | 107       | 100  | 107  | 1010  |
| CO1                 | 3    | 3    | 2    | 2         | 2          | -         | -         | -    | 2    | 2     |
| CO2                 | 2    | 2    | 2    | 2         | 2          | -         | -         | -    | 2    | 2     |
| CO3                 | 3    | 3    | 3    | 2         | 2          | 2         | -         | -    | 2    | 2     |
| CO4                 | 2    | 3    | 2    | 1         | 2          | 2         | 1         | 1    | 2    | 2     |
| Weighted<br>Average | 2.5  | 2.75 | 2.25 | 1.75      | 2          | 2         | 1         | 1    | 2    | 2     |

1: Low, 2: Moderate, 3: High

## MOBILE APPLICATION DEVELOPMENT WITH ANDROID 3:0:1

#### **Outcomes:**

- Build sample android application.
- Develop user interfaces for android applications.
- Develop android applications to share data between different applications.
- Deploy android applications.

|                     |      |      |      | Cour | se articu   | lation m | atrix:      |      |      |       |
|---------------------|------|------|------|------|-------------|----------|-------------|------|------|-------|
| РО                  |      |      |      |      |             |          |             |      |      |       |
| СО                  | PO 1 | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | PO 6     | <b>PO 7</b> | PO 8 | PO 9 | PO 10 |
| CO1                 | 3    | 3    | 2    | 3    | 2           | 2        | 2           | 1    | 2    | 2     |
| CO2                 | 3    | 3    | 3    | 3    | 3           | 2        | 2           | 2    | 2    | 2     |
| CO3                 | 3    | 3    | 3    | 3    | 2           | 3        | 2           | 2    | 3    | 3     |
| CO4                 | 3    | 3    | 3    | 3    | 3           | 2        | 2           | 2    | 3    | 3     |
| Weighted<br>Average | 3    | 3    | 2.75 | 3    | 2.50        | 2.25     | 2           | 1.75 | 2.5  | 2.5   |

1: Low, 2: Moderate, 3: High

#### SC

## LINUX PROGRAMMING

3:0:1

**Outcomes:** 

- Work confidently in Linux environment with an understanding of the architecture and shell programming.
- Work with sed/awk and gain ability to write programs using file and directory related system calls
- Ability to handle processes using process related system calls
- Ability to write communicating programs using different IPC mechanisms and Berkeley sockets.

|                     |      |      | 0           | Course ar | ticulatio | n matrix | :           |     |      |       |
|---------------------|------|------|-------------|-----------|-----------|----------|-------------|-----|------|-------|
| PO                  | DO 1 |      | <b>DO 3</b> |           | DO 5      |          | <b>DO 7</b> |     |      | DO 10 |
| CO                  | FUT  | FU Z | FU 3        | FU 4      | r05       | FU 0     | FU /        | FUð | FU 9 | FU 10 |
| <b>CO1</b>          | 3    | 2    | 1           | -         | -         | 2        | -           | 2   | 1    | 1     |
| CO2                 | 3    | 2    | 1           | -         | -         | -        | -           | 2   | 1    | 1     |
| CO3                 | 3    | 2    | 1           | 1         | -         | -        | 2           | 2   | 1    | 1     |
| <b>CO4</b>          | 3    | 2    | 1           | 1         | 2         | -        | 2           | 2   | 1    | 1     |
| Weighted<br>Average | 3    | 2    | 1           | 1         | 2         | 2        | 2           | 2   | 1    | 1     |

1: Low, 2: Moderate, 3: High

SC

#### **INFORMATION RETRIEVAL**

### **Outcomes:**

- Locate relevant information in large collections of data.
- Impart features of retrieval systems for Text data.
- Analyze the performance of retrieval systems using test collection.
- Implement different clustering algorithms.

## **Course articulation matrix:**

| РО                  | DOI |     |      |     |     |     |     | DOG |     |      |
|---------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|------|
| СО                  | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| CO1                 | 1   | 3   | 2    | -   | 2   | 2   | 2   | 2   | 1   | 1    |
| CO2                 | -   | 3   | 3    | 2   | 2   | -   | 2   | 2   | 1   | 1    |
| CO3                 | 1   | 3   | 3    | 2   | 2   | -   | 2   | 2   | 1   | 1    |
| CO4                 | 1   | 3   | 3    | 2   | 2   | -   | 2   | 2   | 1   | 1    |
| Weighted<br>Average | 1   | 3   | 2.75 | 2   | 2   | 2   | 2   | 2   | 1   | 1    |

1: Low, 2: Moderate, 3: High

## **BIG DATA ANALYTICS**

3:0:1

**Outcomes:** 

SC

- Apply the Data Analytics Life Cycle to real life cases.
- Process Data with Hadoop.
- Apply the necessary techniques for data analytics.
- Demonstrate Data Analysis using R.

**Course articulation matrix:** 

| РО                  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 |
|---------------------|------|------|------|------|------|------|------|------|------|-------|
| СО                  |      | 102  | 105  | 104  | 103  | 100  | 107  | 100  | 107  | 1010  |
| CO1                 | 3    | 2    | 2    | 2    | 3    | 1    | 2    | -    | -    | -     |
| CO2                 | 3    | 3    | 2    | 3    | 3    | 1    | 2    | 1    | 2    | 1     |
| CO3                 | 3    | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |
| CO4                 | 3    | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |
| Weighted<br>Average | 3    | 2.25 | 2.5  | 2.75 | 3    | 1.5  | 2    | 1.25 | 2    | 1.75  |

1: Low, 2: Moderate, 3: High

3:0:1

SC

#### MACHINE LEARNING USING PYTHON

#### **Outcomes:**

SC

- Identify the need for Machine Learning using Python, appropriate data frames and its operations.
- Ability to build and validate linear regression models
- Ability understand different classification techniques and build classification models
- Ability to use unsupervised learning techniques to cluster data and Apply Scikit library for Machine Learning.

|                     |             |     |              |     |      |      | -    |     |     |              |
|---------------------|-------------|-----|--------------|-----|------|------|------|-----|-----|--------------|
| РО                  | <b>DO 1</b> |     | <b>D</b> O 3 |     | DO 5 | DO 6 | PO 7 |     |     | <b>PO 10</b> |
| СО                  | TUT         | 102 | 103          | 104 | 103  | 100  | 107  | 100 | 109 | 1010         |
| CO1                 | 3           | 3   | 3            | 3   | 3    | 2    | 2    | 2   | 3   | 3            |
| CO2                 | 3           | 3   | 3            | 3   | 3    | 2    | 2    | 2   | 3   | 3            |
| CO3                 | 3           | 3   | 3            | 3   | 3    | 3    | 2    | 2   | 3   | 3            |
| <b>CO4</b>          | 3           | 3   | 3            | 3   | 3    | 2    | 2    | 2   | 3   | 3            |
| Weighted<br>Average | 3           | 3   | 3            | 3   | 3    | 2.25 | 2    | 2   | 3   | 3            |

**Course articulation matrix:** 

1: Low, 2: Moderate, 3: High

## SC

## ADVANCED JAVA

3:0:1

**Outcomes:** 

- Develop component-based Java software using Java Beans.
- Develop server-side programs in the form of servlets.
- Implement Entity Java bean in stateless and state full environment.
- Employ the concepts of EJB and JAR files.

|                     |      |      | С           | ourse ai | rticulati   | on matr | ix:         |     |      |              |
|---------------------|------|------|-------------|----------|-------------|---------|-------------|-----|------|--------------|
| РО                  | DO 1 |      | <b>DO 3</b> |          | <b>PO 5</b> |         | <b>PO 7</b> |     | PO 0 | <b>DO 10</b> |
| СО                  |      | ru z | 103         | FU4      | 105         | FUO     |             | FUo | 109  | FO 10        |
| CO 1                | 3    | 2    | -           | 1        | 3           | -       | -           | 2   | -    | 2            |
| CO 2                | 3    | 2    | 2           | 2        | 3           | 2       | -           | 2   | 2    | 3            |
| CO 3                | 3    | 3    | 3           | 2        | 3           | 2       | 2           | 2   | 2    | 3            |
| <b>CO 4</b>         | 3    | 2    | 2           | 1        | 3           | 2       | 2           | 2   | 2    | 3            |
| Weighted<br>average | 3    | 2.25 | 1.75        | 1.5      | 3           | 2       | 2           | 2   | 1.5  | 2.75         |

1: Low, 2: Moderate, 3: High

3:0:1

#### MANAGEMENT INFORMATION SYSTEMS

**Outcomes:** 

- Explain the role of IS in business.
- Ability to explain different enterprise management and functional management systems in business.
- Identify the applications of e-commerce and issues of e-commerce.
- Understand decision support systems.

|                     |     |     | Ċ   | 'ourse ar | ticulatio | n matrix | :   |     |     |      |
|---------------------|-----|-----|-----|-----------|-----------|----------|-----|-----|-----|------|
| PO                  | PO1 | PO1 | PO3 | PO4       | PO5       | PO6      | PO7 | POS | POQ | PO10 |
| CO                  | 101 | 102 | 105 | 104       | 103       | 100      | 107 | 100 | 109 | 1010 |
| CO1                 | 2   | -   | 2   | 2         | 1         | 1        | 2   | 2   | 2   | 1    |
| CO2                 | 2   | -   | 2   | 2         | 2         | 2        | 2   | 2   | 2   | 1    |
| CO3                 | 1   | 2   | 3   | 3         | 2         | 1        | 2   | 2   | 2   | 1    |
| <b>CO4</b>          | 1   | 2   | 3   | 3         | 2         | 1        | 2   | 2   | 2   | 1    |
| Weighted<br>Average | 1.5 | 2   | 2.5 | 2.5       | 1.75      | 1.25     | 2   | 2   | 2   | 1    |

1: Low, 2: Moderate, 3: High

## SC

SC

**Outcomes:** 

#### **BUSINESS INTELLIGENCE**

3:1:0

Outcomes:

- Acquire the knowledge on Business Intelligence methodologies.
- Comprehend the User models of Business Intelligence in real time scenarios.
- Employ the life cycle strategies on various BI capabilities.
- Compare and contrast various BI implementations in major companies.

|             |      |      | (    | Course a | rticulatio | on matri | x:   |      |      |       |
|-------------|------|------|------|----------|------------|----------|------|------|------|-------|
| PO          | PO 1 | PO 2 | PO 3 | PO 4     | PO 5       | PO 6     | PO 7 | PO 8 | PO 9 | PO 10 |
| СО          | 101  | 102  | 105  | 104      | 103        | 100      | 107  | 100  | 109  | 1010  |
| <b>CO 1</b> | 2    | 2    | 1    | 1        | 2          | -        | 2    | 2    | 1    | 1     |
| CO 2        | 3    | 2    | 1    | 2        | 2          | -        | 2    | 2    | 1    | 1     |
| <b>CO 3</b> | 3    | 3    | 1    | 2        | 2          | 2        | 2    | 2    | 1    | 1     |
| <b>CO 4</b> | 3    | 3    | 1    | 1        | 2          | 2        | 2    | 2    | 1    | 1     |
| Weighted    |      |      | _    |          | _          | _        |      | _    |      |       |
| Average     | 2.75 | 2.5  | 1    | 1.5      | 2          | 2        | 2    | 2    | 1    | 1     |

1: Low, 2: Moderate, 3: High

## ENTREPRENEURSHIP DEVELOPMENT

3:1:0

- Analyze the history and need for entrepreneurship
- Employ the functions of women and rural entrepreneurship
- Inculcating the behaviors of entrepreneurs
- Comprehend the need and importance of management

SC
|                     |     |     | C    | Course ai | ticulatio | on matrix | <b>K:</b> |      |      |      |
|---------------------|-----|-----|------|-----------|-----------|-----------|-----------|------|------|------|
| PO<br>CO            | PO1 | PO2 | PO3  | PO4       | PO5       | PO6       | PO7       | PO8  | PO9  | PO10 |
| C01                 | 2   | -   | 3    | 2         | 2         | 2         | 1         | 1    | 1    | 1    |
| CO2                 | 1   | -   | 1    | 1         | 2         | 2         | 1         | 2    | 1    | 2    |
| CO3                 | -   | -   | 2    | 1         | -         | 2         | 1         | 1    | 1    | 1    |
| CO4                 | -   | 3   | 1    | 1         | 1         | 1         | 1         | 3    | 2    | 1    |
| Weighted<br>Average | 1.5 | 3   | 1.75 | 1.5       | 1.66      | 1.75      | 1         | 1.75 | 1.25 | 1.25 |

1: Low, 2: Moderate, 3: High

#### COMMUNICATION SKILLS

3:1:0

#### **Outcomes:**

SC

- Understand and apply knowledge of human communication and language processes as they occur across various contexts from multiple perspectives.
- Understand and evaluate key theoretical approaches used in the interdisciplinary field of communication.
- Find, use, and evaluate primary academic writing associated with the communication discipline.
- Communicate effectively orally and in writing.

|                     | Course articulation matrix: |      |      |      |      |      |      |      |      |       |  |  |  |
|---------------------|-----------------------------|------|------|------|------|------|------|------|------|-------|--|--|--|
| РО                  | PO 1                        | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 |  |  |  |
| СО                  | 101                         | 101  | 100  | 101  |      |      | 107  | 100  |      | 1010  |  |  |  |
| CO 1                | -                           | -    | -    | -    | 2    | -    | 3    | 3    | 2    | 3     |  |  |  |
| CO 2                | -                           | -    | 3    | 3    | 2    | 3    | -    | 3    | 3    | 3     |  |  |  |
| CO 3                | -                           | 3    | 3    | -    | 2    | 2    | -    | 3    | 3    | 3     |  |  |  |
| <b>CO 4</b>         | 3                           | -    | 3    | 3    | -    | 2    | -    | 3    | 3    | 3     |  |  |  |
| Weighted<br>Average | 3                           | 3    | 3    | 3    | 2    | 2.33 | 3    | 3    | 2.75 | 3     |  |  |  |

1: Low, 2: Moderate, 3: High

#### SC

#### PROFESSIONAL ETHICS AND HUMAN VALUES

3:1:0

#### **Outcomes:**

- Implement the aspects of Human Values.
- Interpret the ethics of engineering and its associated responsibilities.
- Employ the code of ethics in their profession.
- Display the awareness of Global issues in Ethics.

| PO        |       |     |     |     |     |     | -   |     |     |             |
|-----------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| <u>CO</u> | - PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | <b>PO10</b> |
| CO1       | -     | -   | -   | -   | -   | 2   | 3   | 2   | -   | 3           |
| CO2       | -     | 2   | -   | -   | 3   | 2   | 3   | 2   | -   | 3           |
| CO3       | -     | -   | 3   | -   | -   | 2   | 3   | 2   | -   | 3           |
| CO4       | 3     | -   | -   | 3   | -   | 2   | 3   | 2   | 3   | 3           |

| w eighted                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                         |                                                                                                  |                                                                                                                  |                                                                                              |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| Average                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                               | 3                                                                                                       | 3                                                                                                | 3                                                                                                                | 2                                                                                            | 3                                                                                  | 2                                                              | 3                                                                 |                                        | 3                                                                                            |
| Low, 2: Mo                                                                                                                                                                                      | derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : High                                                                                                                                                                          |                                                                                                         |                                                                                                  |                                                                                                                  |                                                                                              |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                         |                                                                                                  |                                                                                                                  |                                                                                              |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 | С                                                                                                       | YBER S                                                                                           | ECURI                                                                                                            | ГΥ                                                                                           |                                                                                    |                                                                |                                                                   | 3:1                                    | :0                                                                                           |
| tcomes:                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                 | <b>C</b> 1                                                                                              | •                                                                                                |                                                                                                                  |                                                                                              |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
| • Underst                                                                                                                                                                                       | and the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oncept o                                                                                                                                                                        | I cyber c                                                                                               | rime and                                                                                         | offense                                                                                                          | S.                                                                                           |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
| <ul> <li>Analyze</li> <li>Domono</li> </ul>                                                                                                                                                     | e the prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vorious                                                                                                                                                                         | ating to c                                                                                              | f outport                                                                                        | mes usin                                                                                                         | g mobile                                                                                     | pnones.                                                                            |                                                                |                                                                   |                                        |                                                                                              |
| <ul> <li>Definitions</li> <li>Underst</li> </ul>                                                                                                                                                | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | various a                                                                                                                                                                       | mouter F                                                                                                | Teyber-e                                                                                         | at probl                                                                                                         | em areas                                                                                     |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
| • Onderst                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | appry Co                                                                                                                                                                        | inputer i                                                                                               | orensie                                                                                          | sat proof                                                                                                        | enn areas                                                                                    | •                                                                                  |                                                                |                                                                   |                                        |                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 | Co                                                                                                      | urse arti                                                                                        | iculation                                                                                                        | matrix                                                                                       |                                                                                    |                                                                |                                                                   |                                        |                                                                                              |
| РО                                                                                                                                                                                              | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO2                                                                                                                                                                             | PO3                                                                                                     | PO4                                                                                              | PO5                                                                                                              | PO6                                                                                          | PO7                                                                                | PO                                                             | 3 PO                                                              | 9                                      | PO1                                                                                          |
| CO                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                         |                                                                                                  |                                                                                                                  |                                                                                              |                                                                                    |                                                                |                                                                   | 1                                      |                                                                                              |
|                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                               | 2                                                                                                       | 1                                                                                                | 2                                                                                                                | 2                                                                                            |                                                                                    | 1                                                              |                                                                   | 1                                      | 1                                                                                            |
| $\frac{CO2}{CO3}$                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                               | 3                                                                                                       | 3<br>2                                                                                           | 2                                                                                                                | <u> </u>                                                                                     | 1                                                                                  | 1                                                              |                                                                   | 1<br>1                                 |                                                                                              |
| CO4                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                               | 2                                                                                                       | 2                                                                                                | 2                                                                                                                | 1                                                                                            | 1                                                                                  | 1                                                              |                                                                   | 1<br>1                                 |                                                                                              |
| Weighted                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                         |                                                                                                  | -                                                                                                                | -                                                                                            | -                                                                                  | -                                                              |                                                                   | -                                      |                                                                                              |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                               | 2 22                                                                                                    | 2                                                                                                | •                                                                                                                | 1 5                                                                                          | 4                                                                                  | 4                                                              |                                                                   |                                        | -                                                                                            |
| Average                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                               | 2.33                                                                                                    | 2                                                                                                | 2                                                                                                                | 1.5                                                                                          | 1                                                                                  | 1                                                              |                                                                   | 1                                      | I                                                                                            |
| Average<br>Low, 2: Mo                                                                                                                                                                           | 2<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>: High                                                                                                                                                                     | 2.33                                                                                                    | 2                                                                                                | 2                                                                                                                | 1.5                                                                                          | I                                                                                  | I                                                              |                                                                   | 1                                      | 1                                                                                            |
| Average<br>Low, 2: Moo                                                                                                                                                                          | 2<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>: High                                                                                                                                                                     | 2.33                                                                                                    | 2                                                                                                | 2                                                                                                                | 1.5                                                                                          | 1                                                                                  |                                                                |                                                                   | 1                                      | 1                                                                                            |
| Average<br>Low, 2: Moo                                                                                                                                                                          | 2<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>: High                                                                                                                                                                     | 2.33<br>SIMUL                                                                                           | 2<br>ATION                                                                                       | AND M                                                                                                            | ODELI                                                                                        | I<br>NG                                                                            |                                                                |                                                                   | 1<br>3:(                               | 1<br>0:1                                                                                     |
| Average<br>Low, 2: Moo<br>tcomes:                                                                                                                                                               | 2<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>: High                                                                                                                                                                     | 2.33<br>SIMUL                                                                                           | ATION                                                                                            | AND M                                                                                                            | ODELI                                                                                        | NG                                                                                 |                                                                |                                                                   | 1<br>3:(                               | 1<br>0:1                                                                                     |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze                                                                                                                                                  | 2<br>derate, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : High                                                                                                                                                                          | 2.33<br>SIMUL                                                                                           | ATION<br>s of Syste                                                                              | AND M<br>em and id                                                                                               | ODELII<br>dentify the                                                                        | NG<br>ne Applic                                                                    | cations o                                                      | f Simula                                                          | 1<br>3:(                               | 1<br>0:1                                                                                     |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Ran                                                                                                                           | 2<br>derate, 3<br>e the diffe<br>ent diffe<br>dom num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : High<br>erent Cor<br>rent algo<br>ibers.                                                                                                                                      | SIMUL<br>nponents<br>rithms a                                                                           | ATION<br>s of Syste                                                                              | AND M<br>em and id<br>d with g                                                                                   | ODELI<br>dentify the<br>neration                                                             | NG<br>ne Applic<br>n of Ran                                                        | cations o<br>dom nu                                            | f Simula<br>mbers ar                                              | 1<br>3:(<br>ation<br>and te            | 1<br>0:1<br>est                                                                              |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem                                                                                                              | 2<br>derate, 3<br>e the diffe<br>ent diffe<br>dom num<br>ent diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>: High</b><br>erent Cor<br>rent algo<br>bers.<br>rent meth                                                                                                                   | SIMUL<br>nponents<br>rithms a<br>ods of ge                                                              | ATION<br>s of Syste<br>ssociated                                                                 | AND M<br>em and id<br>d with go                                                                                  | ODELII<br>dentify the<br>neration<br>dom Var                                                 | NG<br>ne Applic<br>n of Ran<br>riants.                                             | cations o<br>dom nu                                            | f Simula<br>mbers ar                                              | 1<br>3:(<br>ation<br>ad te             | 1<br>0:1<br>est                                                                              |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze                                                                                                 | 2<br>derate, 3<br>e the diffe<br>ent diffe<br>dom num<br>ent differ<br>e the diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : High<br>erent Cor<br>rent algo<br>ibers.<br>rent meth<br>erent tech                                                                                                           | <b>SIMUL</b><br>nponents<br>rithms a<br>ods of g<br>miques i                                            | ATION<br>s of Syste<br>ssociated<br>enerating<br>n Verific                                       | <b>AND M</b><br>em and id<br>d with go<br>g the Ran<br>ation and                                                 | ODELII<br>dentify theneration<br>dom Van<br>d Validat                                        | NG<br>ne Applio<br>n of Ran<br>riants.<br>tion of si                               | cations o<br>dom nu<br>mulation                                | f Simula<br>mbers ar                                              | <b>1</b><br><b>3:(</b><br>and<br>and   | 0:1<br>est                                                                                   |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a                                                                                     | 2<br>derate, 3<br>e the diffe<br>ent diffe<br>dom num<br>ent differ<br>e the diffe<br>malysis f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : High<br>erent Cor<br>rent algo<br>bers.<br>rent meth<br>erent tech<br>or differe                                                                                              | SIMUL<br>nponents<br>rithms a<br>ods of go<br>niques in<br>ent types                                    | ATION<br>s of Syste<br>ssociated<br>enerating<br>n Verific<br>of Simul                           | AND M<br>em and id<br>d with go<br>the Ran<br>ation and<br>lations.                                              | ODELII<br>dentify the<br>eneration<br>dom Van<br>d Validat                                   | NG<br>ne Applie<br>n of Ran<br>riants.<br>tion of si                               | cations o<br>dom nu<br>mulation                                | f Simula<br>mbers ar                                              | <b>1</b><br><b>3:(</b><br>and<br>and   | 0:1<br><br>the                                                                               |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rane<br>• Implem<br>• Analyze<br>output a                                                                                     | 2<br>derate, 3<br>e the different differen | : High<br>erent Cor<br>rent algo<br>bers.<br>rent meth<br>erent tech<br>or differe                                                                                              | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of ge<br>miques i<br>ent types                             | ATION<br>s of Syste<br>ssociated<br>enerating<br>n Verific<br>of Simul                           | AND M<br>em and ic<br>d with g<br>the Ran<br>ation and<br>ations.<br>rticulati                                   | <b>ODELI</b><br>dentify the<br>eneration<br>dom Van<br>d Validat                             | NG<br>ne Applic<br>n of Ran<br>riants.<br>tion of si<br><b>ix:</b>                 | cations of<br>dom nut<br>mulation                              | f Simula<br>mbers ar                                              | 1<br>3:(<br>ition<br>and<br>and        | 0:1<br><br>est                                                                               |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a                                                                                     | derate, 3<br>derate, 3<br>e the different  | : High<br>erent Cor<br>rent algo<br>abers.<br>rent meth<br>erent tech<br>or differe                                                                                             | SIMUL<br>nponents<br>rithms a<br>ods of ge<br>miques i<br>ent types<br>(<br>PO 3                        | ATION<br>s of Syste<br>ssociated<br>enerating<br>n Verific<br>of Simul<br>Course a<br>PO 4       | AND M<br>em and id<br>d with ge<br>g the Ran<br>ation and<br>lations.<br>rticulati<br>PO 5                       | ODELII<br>dentify theneration<br>dom Var<br>d Validation<br>on matr<br>PO 6                  | NG<br>ne Applia<br>n of Ran<br>tiants.<br>tion of si<br><b>ix:</b><br>PO 7         | cations o<br>dom nut<br>mulation<br>PO 8                       | f Simula<br>mbers ar<br>n models<br><b>PO 9</b>                   | 1<br>3:(<br>tion<br>and te<br>and      | 1<br>0:1<br>est<br>the<br>O 10                                                               |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a<br>PO<br>CO                                                                         | 2<br>derate, 3<br>e the different differen | Erent Corrent algo<br>ibers.<br>Tent metherent tech<br>for differe                                                                                                              | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of go<br>miques i<br>ent types<br>(<br>PO 3                | ATION<br>s of Syste<br>ssociated<br>n Verific<br>of Simu<br>Course a<br>PO 4                     | AND M<br>em and id<br>d with go<br>g the Ran<br>ation and<br>lations.<br>rticulati<br>PO 5                       | ODELII<br>dentify the<br>eneration<br>dom Van<br>d Validat<br>on matr<br>PO 6                | NG<br>ne Applio<br>n of Ran<br>tiants.<br>tion of si<br>ix:<br>PO 7                | eations o<br>dom nu<br>mulation<br>PO 8                        | f Simula<br>mbers ar<br>n models<br>PO 9                          | 1<br>3:(<br>and te<br>and              | 1<br>0:1<br>est<br>the<br>0 10                                                               |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a<br>PO<br>CO<br>CO1                                                                  | 2         derate, 3         e the different                                                                                          | <ul> <li>High</li> <li>erent Corrent algo</li> <li>bers.</li> <li>rent metherent tech</li> <li>or differed</li> <li>PO 2</li> <li>1</li> </ul>                                  | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of ga<br>niques in<br>ent types<br>PO 3<br>1               | ATION<br>s of Syste<br>ssociated<br>n Verific<br>of Simu<br>Course a<br>PO 4<br>1                | AND M<br>em and id<br>d with go<br>the Ran<br>ation and<br>ations.<br>rticulati<br>PO 5<br>1                     | ODELII<br>dentify the<br>eneration<br>dom Van<br>d Validat<br>on matr<br>PO 6<br>1           | NG<br>ne Applio<br>n of Ran<br>tiants.<br>tion of si<br>ix:<br>PO 7                | reations of<br>dom nut<br>mulation<br>PO 8                     | f Simula<br>mbers ar<br>n models<br>PO 9<br>2                     | 1<br>3:(<br>tion<br>nd te<br>and<br>P( | 1<br>0:1<br>est<br>the<br>O 10<br>2                                                          |
| Average<br>Low, 2: Moo<br>tcomes:<br>• Analyze<br>• Implem<br>for Rane<br>• Implem<br>• Analyze<br>output a<br>PO<br>CO<br>CO1<br>CO2                                                           | 2<br>derate, 3<br>e the different differen | <ul> <li>High</li> <li>erent Corrent algoubers.</li> <li>rent metherent tech for differed</li> <li>PO 2</li> <li>1</li> <li>3</li> </ul>                                        | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of go<br>miques in<br>ent types<br>(<br>PO 3<br>1<br>3     | ATION<br>s of Syste<br>ssociated<br>n Verific<br>of Simu<br>Course a<br>PO 4<br>1<br>3           | AND M<br>em and io<br>d with ge<br>the Ran<br>ation and<br>ations.<br>rticulati<br>PO 5<br>1<br>3                | ODELI<br>dentify the<br>eneration<br>dom Van<br>d Validat<br>on matr<br>PO 6<br>1<br>-       | NG<br>ne Applio<br>n of Ran<br>tiants.<br>tion of si<br>ix:<br>PO 7<br>-<br>-      | reations of<br>dom nut<br>mulation<br>PO 8<br>1<br>1           | f Simula<br>mbers ar<br>n models<br>PO 9<br>2<br>1                | 1<br>3:(<br>tion<br>nd te<br>and<br>P( | 1<br>0:1<br><br>est<br>the<br>0 10<br>2<br>1                                                 |
| Average<br>Low, 2: Mod<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a<br>PO<br>CO<br>CO1<br>CO2<br>CO3<br>CO1                                             | 2<br>derate, 3<br>e the different differen | <ul> <li>High</li> <li>erent Corrent algo abers.</li> <li>rent metherent tech for differed</li> <li>PO 2</li> <li>1</li> <li>3</li> <li>2</li> </ul>                            | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of ge<br>miques i<br>ent types<br>(<br>PO 3<br>1<br>3<br>2 | ATION<br>s of Syste<br>ssociated<br>n Verific<br>of Simu<br>Course a<br>PO 4<br>1<br>3<br>2      | AND M<br>em and id<br>d with ge<br>g the Ran<br>ation and<br>ations.<br>rticulati<br>PO 5<br>1<br>3<br>2         | ODELII<br>dentify theneration<br>dom Varid Validat<br>on matr<br>PO 6<br>1<br>-<br>-         | NG<br>ne Applio<br>n of Ran<br>tiants.<br>tion of si<br>ix:<br>PO 7<br>-<br>-<br>- | reations of<br>dom nut<br>mulation<br>PO 8<br>1<br>1<br>-      | f Simula<br>mbers ar<br>n models<br>PO 9<br>2<br>1<br>1           | 1<br>3:(<br>tion<br>and te<br>and      | 1<br>0:1<br>est<br>the<br>0 10<br>2<br>1<br>1                                                |
| Average<br>Low, 2: Mod<br>tcomes:<br>• Analyze<br>• Implem<br>for Rand<br>• Implem<br>• Analyze<br>output a<br>PO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO | 2         derate, 3         e the different                                                                                          | <ul> <li>High</li> <li>erent Correct algo</li> <li>bers.</li> <li>rent metherent tech</li> <li>or differed</li> <li>PO 2</li> <li>1</li> <li>3</li> <li>2</li> <li>2</li> </ul> | 2.33<br>SIMUL<br>nponents<br>rithms a<br>ods of geniques in<br>ent types<br>PO 3<br>1<br>3<br>2<br>2    | ATION<br>s of Syste<br>ssociated<br>n Verific<br>of Simu<br>Course a<br>PO 4<br>1<br>3<br>2<br>1 | AND M<br>em and id<br>d with ge<br>the Ran<br>ation and<br>ations.<br>rticulati<br>PO 5<br>1<br>3<br>2<br>2<br>2 | ODELII<br>dentify theneration<br>dom Van<br>d Validat<br>on matr<br>PO 6<br>1<br>-<br>-<br>- | NG<br>ne Applio<br>n of Ran<br>tiants.<br>tion of si<br>ix:<br>PO 7<br>-<br>-<br>2 | reations of<br>dom nut<br>mulation<br>PO 8<br>1<br>1<br>-<br>- | f Simula<br>mbers ar<br>n models<br>PO 9<br>2<br>1<br>1<br>1<br>1 | 1<br>3:(<br>and te<br>and              | I           0:1              est           1           0           1           1           1 |

#### **ARTIFICIAL INTELLIGENCE**

**Outcomes:** 

- Express the modern view of AI and its foundation.
- Illustrate Search Strategies with algorithms and Problems.
- Implement Proportional logic and apply inference rules.
- Apply suitable techniques for NLP and Game Playing.

|                     | Course articulation matrix: |      |      |             |      |      |      |      |     |              |  |  |  |
|---------------------|-----------------------------|------|------|-------------|------|------|------|------|-----|--------------|--|--|--|
| РО                  | <b>DO 1</b>                 | PO 2 | DO 3 | <b>PO</b> 4 | PO 5 | PO 6 | PO 7 | DO 8 |     | <b>PO 10</b> |  |  |  |
| СО                  | TUT                         | 102  | 103  | 104         | 103  | 100  | 107  | 100  | 109 |              |  |  |  |
| CO1                 | 3                           | 3    | 3    | 3           | 3    | 3    | 2    | 2    | 2   | 3            |  |  |  |
| CO2                 | 3                           | 3    | 3    | 3           | 3    | 3    | 3    | 2    | 3   | 3            |  |  |  |
| CO3                 | 3                           | 3    | 3    | 3           | 3    | 3    | 2    | 2    | 2   | 3            |  |  |  |
| CO4                 | 3                           | 3    | 3    | 3           | 3    | 3    | 2    | 2    | 3   | 3            |  |  |  |
| Weighted<br>Average | 3                           | 3    | 3    | 3           | 3    | 3    | 2.25 | 2    | 2.5 | 3            |  |  |  |

1: Low, 2: Moderate, 3: High

#### OE

#### WORLDWIDEWEB

3:1:0

3:1:0

#### **Outcomes:**

- Understand the working scheme of the Internet and World Wide Web.
- Evaluate the various protocols of the Internet.
- Comprehend and demonstrate the application of Hypertext Mark-up Language(HTML).
- Apply the various security tools and understand the need of security measures.

|                     | Course articulation matrix: |      |      |      |      |      |      |      |     |       |  |  |  |  |
|---------------------|-----------------------------|------|------|------|------|------|------|------|-----|-------|--|--|--|--|
| РО                  | PO 1                        | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 |     | PO 10 |  |  |  |  |
| СО                  |                             | 102  | 103  | 104  | 103  | 100  | 107  | 100  | 109 | 1010  |  |  |  |  |
| CO1                 | 2                           | 1    | 1    | -    | -    | -    | -    | 2    | -   | 2     |  |  |  |  |
| CO2                 | 2                           | 1    | 1    | 2    | -    | -    | -    | 2    | -   | 2     |  |  |  |  |
| CO3                 | 2                           | 1    | 1    | 2    | 1    | -    | -    | 2    | 2   | 2     |  |  |  |  |
| CO4                 | 2                           | 2    | 2    | 2    | 1    | 1    | 2    | 2    | 2   | 2     |  |  |  |  |
| Weighted<br>Average | 2                           | 1.25 | 1.25 | 2    | 1    | 1    | 2    | 2    | 2   | 2     |  |  |  |  |

1: Low, 2: Moderate, 3: High

#### OE

#### **E-COMMERCE**

3:1:0

#### **Outcomes:**

- Analyse the impact of E-commerce on business models and strategy
- Describe Internet trading relationships including Business to Consumer, Business-to-Business, Intra-organizational structures.
- Assess electronic payment systems and its securities.
- Recognize and discuss global E-commerce issues.

SC

|                     |      |     | С           | ourse ar | ticulatio | n matrix | <b>K:</b> |     |      |             |
|---------------------|------|-----|-------------|----------|-----------|----------|-----------|-----|------|-------------|
| РО                  | DO1  | DOJ | <b>DO</b> 2 | DO4      | DO5       | DOC      | DO7       | DOQ | DOO  | <b>DO10</b> |
| CO                  | PUI  | PO2 | PUS         | P04      | P05       | PU0      | P07       | PUð | P09  | POIU        |
| CO1                 | 1    | 2   | 2           | 2        | 2         | 2        | 1         | 2   | 2    | 2           |
| CO2                 | 2    | 2   | 2           | 2        | 2         | 1        | 1         | 2   | 1    | 1           |
| CO3                 | 2    | -   | 1           | 1        | 2         | 1        | 1         | 2   | 1    | 1           |
| CO4                 | 2    | -   | 2           | 2        | 2         | 1        | 1         | 2   | 1    | 2           |
| Weighted<br>Average | 1.75 | 2   | 1.75        | 1.75     | 2         | 1.25     | 1         | 2   | 1.25 | 1.5         |

1: Low, 2: Moderate, 3: High

#### OE

## **OFFICE AUTOMATION**

3:1:0

**Outcomes:** 

• Understand the basics of computer hardware and software.

- Prepare documents of different types.
- Ability to develop and use spreadsheets for tabulating and analyzing for productivity.
- Prepare presentations.

|                     |             |             |             | Course a | articulat   | ion mati | <b>IX:</b>  |     |      |              |
|---------------------|-------------|-------------|-------------|----------|-------------|----------|-------------|-----|------|--------------|
| РО                  | <b>DO 1</b> | <b>PO 1</b> | <b>DO 3</b> |          | <b>DO 5</b> |          | <b>DO 7</b> |     | DO 0 | <b>DO 10</b> |
| CO                  | PUT         | PO 2        | PO 3        | PU 4     | PU 5        | PUO      | PO /        | PUð | P09  | PO 10        |
| CO1                 | 1           | 1           | 1           | 1        | 1           | -        | -           | 2   | -    | 1            |
| CO2                 | 1           | 1           | 1           | 1        | 1           | 1        | 2           | 2   | 2    | 1            |
| CO3                 | 1           | 1           | 1           | 1        | 1           | 1        | 2           | 2   | 2    | 1            |
| CO4                 | 1           | 1           | 1           | 1        | 1           | 1        | 2           | 2   | 2    | 1            |
| Weighted<br>Average | 1           | 1           | 1           | 1        | 1           | 1        | 2           | 2   | 2    | 1            |

**Course articulation matrix:** 

1: Low, 2: Moderate, 3: High



## SBRR MAHAJANA FIRST GRADE COLLEGE [AUTONOMOUS] (Accredited by NAAC with 'A' grade) POST GRADUATION WING

## Pooja Bhagavat Memorial Mahajana Education Centre

## Affiliated to the University of Mysore

KRS Road, Metagalli, Mysuru-570016

## **DEPARTMENT OF STUDIES IN COMMERCE**

## **Program Outcomes**

**PO1:** Enhance the in-depth knowledge of various fields of business and commerce such as Accounting, International Accounting, Financial derivatives, Business Environment, international business, Research Methodology, and Tax planning, etc.,

**PO2:** Provide practical knowledge to deal with the day-to-day activities of the business by using the techniques like an industrial visit, internship, case study analysis, field visit, role play, etc.,

**PO3:** Inculcate the knowledge of the application of information technology in the field of Commerce.

**PO4:** Educate the students on business ethics, values, and the responsibility of business towards society to contribute the society at large.

**PO5:** Encourage the students to develop an interest in Research.

**PO6:** Build the strong communication skills and interpersonal skills among the students.

**PO7:** Build team spirit among the students to face the real-life situations in their career.

**PO8:** Imparting career enhancement skills by providing training in various competitive exams.

## I SEMESTER ADVANCED ACCOUNTING

## **Course Outcome:**

CO1: Provides detailed insight into various Indian accounting standards

CO2: Stages and process of standards settings by ICAI in India along with compliance and applicability of accounting standards in India.

CO3: Understand the difference between Accounting Standard, IFRS, IASB and FASB and also gain knowledge on Convergence of Indian Accounting Standards with IFRS

CO4: Understand financial disclosures and preparation of accounting reporting.

#### **Course Articulation Matrix**

| CO\PO            | PO1 | PO2  | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 |
|------------------|-----|------|-----|------|-----|-----|-----|-----|
| C01              | 3   | 2    | -   | -    | -   | -   | -   | -   |
| CO2              | 3   | 3    | -   | 1    | 1   | -   | -   | -   |
| CO3              | 3   | 2    | -   | -    | -   | -   | -   | -   |
| CO4              | 3   | 3    | -   | -    | 1   | -   | -   | -   |
| Weighted Average | 3   | 2.25 | -   | 0.25 | 1   | -   | -   | -   |

## **HC02: FINANCIAL MANAGEMENT**

## **Course Outcome:**

**CO1:** Know the relativity of capital investment decisions and financial Policies to business valuations.

**CO2:**Application of different methods of cost of capital to ascertain the overall cost of capital of the firm,

**CO3:** Application of financial leverage to form long-term financial policies for business.

**CO4**:Ascertain common investment criteria and project cash flows with associated corporate project evaluation.

| CO\PO               | PO1 | PO2 | PO3  | PO4  | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|------|------|-----|-----|-----|-----|
| CO1                 | 3   | 3   | 3    | -    | 3   | -   | -   | -   |
| CO2                 | 3   | 3   | 3    | -    | 3   | -   | -   | -   |
| CO3                 | 3   | 3   | -    | 1    | 3   | -   | -   | -   |
| CO4                 | 3   | 3   | 3    | -    | 3   | -   | -   | -   |
| Weighted<br>Average | 3   | 3   | 2.25 | 0.25 | 3   | -   | -   | -   |

## SC 03: MARKETING MANAGEMENT

## **Course Outcomes:**

**CO:** Learn the Importance of how Demographic, Cultural and Institutional factors Shape the Global Marketing Environment

**CO2:**Depict Various Methods through which a firm can promote Its products in markets and be able to make All the necessary decisions needed for promoting the product in markets.

**CO3:** Develop Self-Leadership Strategies to Enhance Personal and Professional Effectiveness.

**CO4** Figure Out the Implications of Current Trends in Social Media Marketing and Emerging Marketing Trends.

**CO5:** Portray decisions related to designing channel as well as physical distribution systems for making available the products in the markets.

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| C01                 | 3   | 3   | 2   |     | 3   | -   | -   | -   |
| CO2                 | 3   | 3   | -   | -   | -   | -   | -   | -   |
| CO3                 | -   | -   | -   | -   | -   | 3   | 3   | -   |
| CO4                 | 2   | 3   | 3   | -   | -   | -   | -   | -   |
| CO5                 | -   | 3   | -   | -   | -   | -   | -   | -   |
| Weighted<br>Average | 1.6 | 2.4 | 1   | -   | 0.6 | 0.6 | 0.6 | -   |

**Course Articulation Matrix** 

## **HC 04: HUMAN RESOURCE MANAGEMENT**

#### **Course Outcome:**

CO1: Understanding of the concept, functions and process of human Resource management.

CO2: Provide practical knowledge on preparation of job description and job specification.

CO3: Enhance the practical knowledge on human resource planning in an organization.

CO4: Design and formulate various HRM processes such as Recruitment, Selection, Training, Development, Performance appraisals.

CO5: Understanding of compensation and reward system adopted in an organization.

| CO\PO               | PO1 | PO2 | PO3  | PO4  | PO5 | PO6  | PO7 | PO8  |
|---------------------|-----|-----|------|------|-----|------|-----|------|
| C01                 | 3   | -   | -    | 2    | -   | -    | -   | -    |
| CO2                 | 1   | 3   | -    | -    | -   | -    | -   | -    |
| CO3                 | 1   | 3   | -    | -    | -   | -    | -   | -    |
| CO4                 | 2   | 3   | -    |      |     | 2    |     | 2    |
| CO5                 | 3   | 3   | -    | -    | -   | -    | -   | -    |
| CO6                 | 2   | -   | 2    | -    | -   | -    | -   | -    |
| Weighted<br>Average | 2   | 2   | 0.33 | 0.33 | -   | 0.33 | -   | 0.33 |

CO6: Understanding the adoption of E-HRM practices in an organization.

#### **Course Articulation Matrix**

#### SC01: INTERNATIONAL BUSINESS ENVIRONMENT

#### **Course Outcomes:**

**CO1**. Learn the dynamics of the international business environment from a competitive and economic perspective.

**CO2**. Depict the various provisions relating to international trade and investment theories, and Transnational Corporations and its recent trends in TNCs.

**CO3.** Know about the international investments and recent trends in FDI Flows.

**CO4**. Outline the International business ethics and International Management.

**CO5.** Portray the approaches towards social responsibility and institutionalizing social responsibility.

| CO\PO    | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1      | 3   | 2   | -   | -   | -   | -   | -   | -   |
| CO2      | 2   | 3   | -   | -   | 1   | -   | -   | -   |
| CO3      | 2   | 3   | -   | -   | 2   | -   | -   | -   |
| CO4      | 2   | -   | -   | 3   | 1   | -   | -   | -   |
| CO5      | 1   | 2   | -   | 3   | 2   | -   | -   | -   |
| Weighted | 2   | 2   | -   | 1.2 | 1.2 | -   | -   | -   |
| Average  |     |     |     |     |     |     |     |     |

**Course Articulation Matrix** 

## SC 02: STATISTICS FOR BUSINESS DECISIONS

### **Course Outcomes**

CO 1: Development of logical reasoning ability in students.

CO 2: Knowledge about the applicability of various parametric and nonparametric tests for analysis of data.

CO 3: Ability to use SPSS to solve statistical problems.

CO 4 : Ability to make decisions under uncertain business situations through analysis.

| CO\PO               | PO1 | PO2 | PO3  | PO4 | PO5  | PO6 | PO7 | PO8 |
|---------------------|-----|-----|------|-----|------|-----|-----|-----|
| CO1                 | 2   | 3   | -    | -   | -    | -   | -   | 3   |
| CO2                 | 1   | 1   | 2    | -   | 3    | -   | -   | -   |
| CO3                 | 1   | 2   | 3    | -   | 3    | -   | -   | 3   |
| CO4                 | -   | 2   | -    | -   | 3    | -   | -   | -   |
| Weighted<br>Average | 1   | 2   | 1.25 | -   | 2.25 | -   | -   | 1.5 |

#### **Course Articulation Matrix**

## SC03: ADVANCED AUDITING

## **Course Outcomes**

**CO-1:** Knowing the Indian Auditing Standards and Audit Procedures.

**CO-2**: Learning the auditing practice of different sectors.

**CO-3:** Preparation of audit report as per CARO 2016.

**CO-4:** Practice of audit through online.

**Course Articulation Matrix** 

| CO\PO               | PO1 | PO2  | PO3 | PO4 | PO5 | PO6  | PO7 | PO8 |
|---------------------|-----|------|-----|-----|-----|------|-----|-----|
| C01                 | 3   | -    | -   | 2   | -   | -    | -   | -   |
| CO2                 | 3   | 3    | -   | -   | -   | -    | -   | -   |
| CO3                 | -   | 3    | -   | -   | -   | 3    | -   | -   |
| CO4                 | -   | 3    | 2   | -   | -   | -    | -   | -   |
| Weighted<br>Average | 1.5 | 2.25 | 0.5 | 0.5 | -   | 0.75 | -   | -   |

## **II SEMESTER**

## HC05: ORGANISATIONAL BEHAVIOUR

## **Course Outcomes:**

**CO1**. Comprehend the conceptualframe work of managementand Organizational behavior

**CO2**. Understanding the complexities associated with management of individual behavior and group behavior in the organization.

**CO3.** Application of various motivational theories in anchoring the behaviour of employees in an organization

**CO4**. Apply creative, critical and reflective thinking to address organizational opportunities and challenges.

| CO\PO    | PO1  | PO2  | PO3 | PO4 | PO5 | PO6  | PO7 | PO8 |
|----------|------|------|-----|-----|-----|------|-----|-----|
| CO1      | 3    | 2    | -   | -   | -   | -    | -   | -   |
| CO2      | 2    | 3    | -   | -   | -   | -    | 3   | -   |
| CO3      | 2    | 3    | -   | -   | -   | 3    | 2   | -   |
| CO4      | 2    | 3    | -   | -   | -   | 2    | 3   | 2   |
| Weighted | 2.25 | 2.75 | -   | -   | -   | 1.25 | 2   | 0.5 |
| Average  |      |      |     |     |     |      |     |     |

#### **Course Articulation Matrix**

## **HC06: CORPORATE GOVERNANCE**

#### **COURSE OUTCOME:**

**CO1:** Know the Conceptual framework of Corporate Governance around the world and in India,

**CO2:** Enhancing the Knowledge on Ethics in Business and the Code of Conduct practiced in various Corporations.

**CO3:** Learn the efforts of governments and various committees in enacting good governance systems in Indian Corporations,

**CO4:** Realize the roles and responsibilities of CEO, CFO, Company Secretary and other key managerial personnel

**CO5:** Identify and understand the various Corporate Social Responsibility activities taken up by the Indian corporate sector.

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1                 | 3   | 2   | -   | 3   | -   | -   | -   | -   |
| CO2                 | 3   | 2   | -   | 3   | -   | -   | 2   | -   |
| CO3                 | 3   | -   | -   | -   | -   | -   | -   | -   |
| CO4                 | 3   | 2   | -   | 2   | -   | -   | -   | -   |
| CO5                 | 2   | 1   | -   | 3   | -   | -   | -   | -   |
| Weighted<br>Average | 2.8 | 1.4 | -   | 2.2 | -   | -   | 0.4 | -   |

**Course Articulation Matrix** 

## **HC07: INTERNATIONAL BUSINESS**

## Course Outcome:

CO1: Identify the key aspects of international trade and calculate its potential gains to participating nations.

CO2: Recognize the characteristics of foreign exchange markets

CO3: Identify the different countries currency regimes around the world.

**CO4:** Evaluate cross-border investment opportunities, and describe a multinational firm's decision-making process

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8  |
|---------------------|-----|-----|-----|-----|------|-----|-----|------|
| CO1                 | 3   | 2   | -   | -   | 2    | -   | -   | -    |
| CO2                 | 3   | 2   | -   | -   | -    | -   | -   | 1    |
| CO3                 | 2   | 3   | -   | -   | 2    | -   | -   |      |
| CO4                 | 2   | 3   | -   | -   | 3    | -   | -   | -    |
| Weighted<br>Average | 2.5 | 2.5 | -   | -   | 1.75 | -   | -   | 0.25 |

### SC 04: CAPITAL MARKET INSTRUMENTS

### **1.Course Outcomes:**

CO-1: learning conceptual and practical knowledge on Capital market and its operations in India

CO-2: Valuation of financial securities like bond, debenture and stocks.

CO-3: Mechanism and application of forwards/futures, options, financial swaps.

CO-4: Learn online trading mechanism of derivatives instruments.

| CO\PO               | PO1  | PO2 | PO3  | PO4 | PO5  | PO6 | PO7 | PO8  |
|---------------------|------|-----|------|-----|------|-----|-----|------|
| CO1                 | 3    | 3   | -    | -   | -    | -   | -   | -    |
| CO2                 | 1    | 3   | 2    | -   | 3    | -   | -   | -    |
| CO3                 | 3    | 3   | -    | -   | 2    | -   | -   | -    |
| CO4                 |      | 3   | 3    | -   |      | -   | -   | 3    |
| Weighted<br>Average | 1.75 | 3   | 1.25 | -   | 1.25 | -   | -   | 0.75 |

#### **Course Articulation Matrix**

#### SC 05: SERVICES MARKETING

#### 1. Course Outcome:

**CO1:**Learn the Concept of Services and intangible products

**CO2:** Comprehend the characteristics of service industry

**CO3:**Visualise the significance of service innovation and design

CO4: Employ various modes of service delivery in service organizations

#### **Course Articulation Matrix**

| CO\PO               | PO1  | PO2  | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 |
|---------------------|------|------|-----|-----|------|-----|-----|-----|
| CO1                 | 3    | 2    | -   | -   | 2    | -   | -   | -   |
| CO2                 | 3    | 2    | -   | -   | 2    | -   | -   | -   |
| CO3                 | 3    | 2    | 2   | -   | 3    | -   | -   | -   |
| CO4                 | 2    | 3    | -   | -   | -    | -   | -   | -   |
| Weighted<br>Average | 2.75 | 2.75 | 0.5 | -   | 1.75 | -   | -   | -   |

## SC 06 : PORTFOLIO MANAGEMENT

#### **Course Outcomes**

CO-1: Know the various investment avenues available for investment and assess the risk and return associated with investments alternatives.

CO-2: Application of fundamental and technical analysis for security valuation

CO-3: Enhance the knowledge in various theories of portfolio analysis, construction and performance evaluation of portfolios

| Course Articulation Matrix |     |     |      |     |     |     |     |     |  |  |
|----------------------------|-----|-----|------|-----|-----|-----|-----|-----|--|--|
| CO\PO                      | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 |  |  |
| CO1                        | 3   | 3   | 2    | -   | 2   | -   | -   |     |  |  |
| CO2                        | 2   | 3   | 3    | -   | 3   | -   | -   | 2   |  |  |
| CO3                        | 3   | 3   | 2    | -   | 3   | -   | -   |     |  |  |
| CO4                        |     | 3   | 2    | -   | -   | -   | -   | 2   |  |  |
| Weighted<br>Average        | 2   | 3   | 2.25 | -   | 2   | -   | -   | 1   |  |  |

#### SC 07: MANAGEMENT INFORMATION SYSTEM

#### 1. Course Outcome:

**CO1:**Learn the significance of Management Information Systems in Businesses

**CO2:**Gain knowledge on effective management of information

**CO3:**Learn about the Enterprise Resource Planning models

**CO4:** Understand the significance of Management Information System in Supply Chain Management

| CO\PO    | PO1  | PO2 | PO3  | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 |
|----------|------|-----|------|-----|-----|-----|------------|-----|
| C01      | 3    | 2   | -    | -   | -   | -   | -          | -   |
| CO2      | 3    | 2   | -    | -   | -   | -   | -          | -   |
| CO3      | 2    | -   | 3    | -   | -   | -   | -          | -   |
| CO4      | 3    | 2   | -    | -   | 2   | -   | -          | -   |
| Weighted | 2.75 | 1.5 | 0.75 | -   | 0.5 | -   | -          | -   |
| Average  |      |     |      |     |     |     |            |     |

**Course Articulation Matrix** 

#### **OE01: STOCK MARKETS AND INVESTEMENT DECISIONS**

#### **Course Outcomes:**

- **CO1**: Enhancing the knowledge on theoretical and practical concepts of Indian stockmarkets and Stock Market Instruments
- CO2: Understanding the Trading mechanism in stock market
- **CO3**: Analyze the Stock price movement using BSE-SENSEX and NSE-NIFTY asbenchmark indices
- **CO4**: Learning online trading mechanism

#### **Course Articulation Matrix**

| CO\PO               | PO1  | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8  |
|---------------------|------|-----|-----|-----|------|-----|-----|------|
| CO1                 | 3    | 3   | 2   | -   | -    | -   | -   | 1    |
| CO2                 | 1    | 3   | 3   | -   | -    | -   | -   | 3    |
| CO3                 | 1    | 2   | 2   | -   | 3    | -   | -   | 1    |
| CO4                 | -    | -   | 3   | -   | -    | -   | -   | 2    |
| Weighted<br>Average | 1.25 | 2   | 2.5 | -   | 0.75 | -   | -   | 1.75 |

## **OE 2 : MANAGEMENT OF ENTERPRISES**

#### **Course Outcomes:**

**CO1:**Familiar with the concepts related to management of enterprises.

**CO2:**Recognize the significance of planning and organizing in Management of Enterprises.

**CO3:** Analyze the implications of coordination in effective management of enterprises

**CO4:**Realise the complexities in controlling of organizational activities through feedback, budgeting and various audit systems.

| CO\PO    | PO1  | PO2 | PO3  | PO4 | PO5 | PO6  | PO7  | PO8 |
|----------|------|-----|------|-----|-----|------|------|-----|
| CO1      | 3    | 2   | -    | -   | -   | -    | -    | -   |
| CO2      | 2    | 2   | -    | -   | -   | 2    | 2    | -   |
| CO3      | 2    | 1   | -    | -   | -   | 3    | 3    | -   |
| CO4      | 2    | 3   | 1    | -   | -   | -    | -    | -   |
| Weighted | 1.25 | 2   | 0.25 | -   | -   | 1.25 | 1.25 | -   |
| Average  |      |     |      |     |     |      |      |     |

## **III SEMESTER**

### HC 08 : BUSINESS RESEARCH METHODS

## **Course Outcome:**

**CO1:** Identify the Research problems in the area of Business and Commerce

**CO 2:** Write a literature review that synthesizes and evaluates literature in a specific topic area to justify a research question

**CO 3:** Apply appropriate research design and methods to address a specific research question and acknowledge the ethical implications of the research

**CO 4:** Develop a research proposal/research paper on the basis their study.

**CO 5:** Present and defend a research proposal/ research paper.

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1                 | 3   | 3   | 2   | -   | 3   | -   | -   | -   |
| CO2                 | 3   | 3   | -   | -   | 3   | 1   | -   | -   |
| CO3                 | -   | 3   | 3   | 3   | 3   | -   | -   | -   |
| CO4                 | 3   | -   | 3   | -   | 2   | 3   | -   | -   |
| CO5                 | -   | 3   | 3   | -   | 3   | 3   | -   | -   |
| Weighted<br>Average | 1.8 | 2.4 | 2.2 | 0.6 | 2.8 | 1.4 | -   | -   |

#### **Course Articulation Matrix**

## **HC 09: OPERATIONS RESEARCH**

#### **Course Outcomes:**

CO 1: Application of Linear Programming in cost minimization and profit maximization

CO 2: Conceptual knowledge and practical applications on Transportation and Assignments

CO 3: Understand the usage of game theory and Simulation for Solving Business Problems

CO4: Understand the applicability of replacement model in cost analysis

#### **Course Articulation Matrix**

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1                 | 2   | 3   | 2   | -   | 2   | -   | -   | -   |
| CO2                 | 3   | 3   | -   | -   | -   | -   | -   | -   |
| CO3                 | 2   | 3   | -   | -   | -   | -   | -   | -   |
| CO4                 | 3   | 3   | -   | -   | -   | -   | -   | -   |
| Weighted<br>Average | 2.5 | 3   | 0.5 | -   | 0.5 | -   | -   | -   |

#### SC08: ENTREPRENEURSHIP DEVELOPMENT

#### **Course Outcomes:**

**CO 1**: Understanding the distinct entrepreneurial traits.

**CO 2:** Know the parameters to assess opportunities and constraints for new business ideas.

**CO 3**: Understand the systematic process to select and screen a business idea.

**CO 4:** Design strategies for successful implementation of ideas.

**CO 5**: Write a business plan.

**CO 6**: know the role of Central and State Government institutions in the development of Entrepreneurship in India.

| CO\PO               | PO1  | PO2  | PO3 | PO4 | PO5  | PO6  | PO7 | PO8  |
|---------------------|------|------|-----|-----|------|------|-----|------|
| CO1                 | 3    | 1    | -   | -   | -    | -    | -   | -    |
| CO2                 | 1    | 3    | -   | -   | 2    | -    | -   | -    |
| CO3                 | 2    | 2    | -   | -   | -    | -    | -   | -    |
| CO4                 | 1    | 3    | -   | -   | -    | -    | -   | -    |
| CO5                 | 2    | 2    | -   | -   | 3    | 3    | -   | 3    |
| CO6                 | 2    | 3    | -   | -   | -    | -    | -   | -    |
| Weighted<br>Average | 1.83 | 2.33 | -   | -   | 0.83 | 0.50 | -   | 0.50 |

#### SC 09 : INTERNATIONAL HUMAN RESOURCE MANAGEMENT

#### **Course Outcomes:**

- **CO 1**: Demonstrate an understanding of key terms, theories/concepts and practices within the field of IHRM
- **CO 2**: Develop and ability to undertake qualitative and quantitative research and apply this knowledge in the context of an independently constructed work
- **CO 3**: Identify and appreciate the significance of ethical issues in HR practices and the management of people in the workplace.
- **CO 4**: Critically appraise the impact of cultural and contextual factors in shapinghuman resource practices in MNCs

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|------|-----|-----|-----|
| CO1                 | 3   | -   | -   | -   | -    | -   | -   | -   |
| CO2                 | 1   | 2   | -   | -   | 3    | -   | -   | -   |
| CO3                 | 3   | 2   | -   | 2   | -    | -   | -   | -   |
| CO4                 | 3   | 2   | -   | 2   | -    | -   | -   | -   |
| Weighted<br>Average | 2.5 | 1.5 | -   | 1   | 0.75 | -   | -   | -   |

#### **Course Articulation Matrix**

## SC 10 :: INTERNATIONAL FINANCIAL MANAGEMENT

#### **Course Outcomes**

- CO-1: Enhance the knowledge on international financial environment.
- CO-2: Understanding of Balance of Payment in Indian Scenario
- CO-3: Practical approach on determination of foreign exchange rates

CO-4: Application of capital budgeting, cost of capital and working capital management in international transactions.

#### **Course Articulation Matrix**

| CO\PO               | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|------|-----|-----|-----|-----|-----|
| CO1                 | 3   | 2   | -    | -   | -   | -   | -   | -   |
| CO2                 | 2   | 2   | -    | -   | 2   | -   | -   | -   |
| CO3                 | 1   | 3   | -    | -   | 2   | -   | -   | -   |
| CO4                 | 2   | 3   | 1    | -   | 2   | -   | -   | -   |
| Weighted<br>Average | 2   | 2.5 | 0.25 | -   | 1.5 | -   | -   | -   |

#### SC 11 : PROJECT MANAGEMENT

#### **Course Outcomes:**

CO-1: Students would learn project planning, analysis and implementation.

CO-2:Describe the method of generating project ideas and screening them

CO-3: Students would learn to prepare a detailed project plan.

CO-4: To understand various financial and technical aspects regarding project management.

| CO\PO    | PO1  | PO2  | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|----------|------|------|-----|-----|-----|-----|-----|-----|
| CO1      | 3    | 3    | -   | -   | -   | -   | -   | -   |
| CO2      | 2    | 3    | -   | -   | 3   | -   | -   | -   |
| CO3      | 3    | 3    | -   | -   | 3   | -   | -   | -   |
| CO4      | 3    | 2    | -   | -   | -   | -   | -   | -   |
| Weighted | 2.75 | 2.75 | -   | -   | 1.5 | -   | -   | -   |
| Average  |      |      |     |     |     |     |     |     |

## SC 12: ELECTIVE GROUP A-BUSINESS TAXATION

## PAPER1: GOODS AND SERVICES TAX AND CUSTOMS DUTY

#### **Course Outcomes**

CO-1: Overview of Good and Services Tax system and structure in India.

CO-2: Practical application of levy, collection, valuation and ITC under GST

CO-3: Filing of online GST return

CO-4: Understanding the concept of Custom's duty, its valuation and duty drawback in India

| CO\PO               | PO1  | PO2  | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 |
|---------------------|------|------|-----|-----|------|-----|-----|-----|
| CO1                 | 3    | 2    | -   | -   | -    | -   | -   | -   |
| CO2                 | 2    | 3    | 3   | -   | 1    | -   | -   | 3   |
| CO3                 | 3    | 3    | 3   | -   | -    | -   | -   | 3   |
| CO4                 | 3    | 3    | 2   | -   | -    | -   | -   | -   |
| Weighted<br>Average | 2.75 | 2.75 | 2   | -   | 0.25 | -   | -   | 1.5 |

**Course Articulation Matrix** 

## SC 13 : ELECTIVE GROUP B – FINANCIAL ACCOUNTING PAPER-1: ACCOUNTING FOR SPECIAL TRANSACTIONS

## **Course Outcomes:**

CO 1: Know the measurement and disclosure of Interim Financial Reporting and Segment Reporting.

CO 2: Recognize the accounting concept relating to levy of income tax

CO 3: Prepare accounting for Goods and Services Tax.

CO 4: Know and understand fair value and its applications in Accounting.

| CO\PO    | PO1  | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|----------|------|-----|-----|-----|-----|-----|-----|-----|
| CO1      | 3    | 2   | -   | -   | -   | -   | -   | -   |
| CO2      | 3    | 2   | -   | -   | -   | -   | -   | -   |
| CO3      | 2    | 3   | 2   | -   | -   | -   | -   | -   |
| CO4      | 3    | 3   | -   | -   | -   | -   | -   | -   |
| Weighted | 2.75 | 2.5 | 0.5 | -   | -   | -   | -   | -   |
| Average  |      |     |     |     |     |     |     |     |

#### **Course Articulation Matrix**

#### SC 14 - ELECTIVE GROUP C: FINANCIAL MANAGEMENT

#### PAPER-1: CORPORATE RESTRUCTURING

#### **Course Outcomes**:

After completion of this course, the students would be able to

**CO-1:**Familiar with the concept of corporate restructuring and major forms of corporate restructuring.

**CO-2:**Analyze the process of value creation under different forms of Merger and Acquisition

**CO-3:**Appraise the operational & financial performance of Merger and Acquisition

**CO-4:**Recognize the various legal aspects regarding mergers/amalgamations and acquisitions/takeovers

| CO\PO    | PO1  | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 |
|----------|------|-----|-----|-----|-----|-----|------------|-----|
| C01      | 3    | -   | -   | -   | -   | -   | -          | -   |
| CO2      | 2    | 3   | -   | -   | 3   | -   | -          | -   |
| CO3      | 2    | 3   | -   | -   | 3   | -   | -          | -   |
| CO4      | 2    | 2   | -   | -   | -   | -   | -          | -   |
| Weighted | 2.25 | 2   | -   | -   | 1.5 | -   | -          | -   |
| Average  |      |     |     |     |     |     |            |     |

#### SC15 - ELECTIVE GROUP D: HUMANRESOURCE MANAGEMENT

#### PAPER1: STRATEGIC MANAGEMENT OF HUMAN RESOURCES

#### **Course Outcomes:**

CO 1: Understand and discuss concepts of SHRM.

CO 2: Application of SHRM techniques in various organizational situations

CO 3: Evaluate the strengths and weaknesses of SHRM practices in organizations.

CO 4: Identify and assess ethical, environmental and/or sustainability considerations in SHRM decision-making and practice.

CO 5: Enlighten top executives on linkages between global and domestic HRM

| CO\PO               | PO1  | PO2  | PO3 | PO4  | PO5  | PO6 | PO7 | PO8 |
|---------------------|------|------|-----|------|------|-----|-----|-----|
| CO1                 | 3    | 3    | -   | -    | -    | -   | -   | -   |
| CO2                 | 1    | 3    | -   | -    | 2    | -   | -   | -   |
| CO3                 | 1    | 3    | -   | -    | 2    | -   | -   | -   |
| CO4                 | 2    | 2    | -   | 3    | 1    | -   | -   | -   |
| Weighted<br>Average | 1.75 | 2.75 | -   | 0.75 | 1.25 | -   | -   | -   |

## SC16 - ELECTIVE GROUP E: MANAGEMENT ACCOUNTING PAPER 1: MARGINAL COSTING AND DECISION MAKING

#### **Course Outcomes**

CO-1: Application of tools and techniques of marginal costing in managerial decision making

CO-2: Practical knowledge on overhead analysis and itsappropriate Applicability

CO-3 : Enhance knowledge on application of Costing standards in Cost Audits.

CO-4: Preparation of Break-Even chart for taking managerial decisions.

| CO\PO               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1                 | 2   | 3   | -   | -   | 2   | -   | -   | -   |
| CO2                 | 2   | 3   | -   | -   | -   | -   | -   | -   |
| CO3                 | 2   | 3   | -   | -   | 2   | -   | -   | -   |
| CO4                 | 2   | 3   | 2   | -   | -   | -   | -   | -   |
| Weighted<br>Average | 2   | 3   | 0.5 | -   | 1   | -   | -   | -   |

#### **Course Articulation Matrix**

## **IV SEMESTER**

## **HC 10: INTERNATIONAL ACCOUNTING**

## **Course Outcome:**

**CO1:** Familiarize and understand the International Financial Reporting Standards (IAS or IFRS) and its application.

**CO2:** Application of different types of financial exposures in IFRS.

**CO3:** Enhance the knowledge on the Transfer Pricing policy in international business

**CO4:** Application of XBRL software in financial reporting.

| CO\PO               | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8  |
|---------------------|-----|-----|------|-----|-----|-----|-----|------|
| CO1                 | 3   | 3   | -    | -   | 2   | -   | -   | -    |
| CO2                 | 2   | 3   | 2    | -   | -   | -   | -   | -    |
| CO3                 | 3   | 3   | -    | -   | -   | -   | -   | -    |
| CO4                 | 2   | 3   | 3    | -   | -   | -   | -   | 3    |
| Weighted<br>Average | 2.5 | 3   | 1.25 | -   | 0.5 | -   | -   | 0.75 |

**Course Articulation Matrix** 

## HC 11 : STRATEGIC MANAGEMENT

#### Course Outcome:

CO 1 : Enlightening the top echelons on the linkages between vision,

mission and strategies

CO 2 : Develop strategies keeping core competencies acquired over the years

CO 3 : Develop competitive building blocks and design approaches to

increase Competitiveadvantage

CO 4 : Enlighten all stake holders on the linkages between strategy

formulation, implementation and evaluation

 $\operatorname{CO}$  5 : Identify endogenous and exogenous forces influencing strategic decision making

| CO\PO               | PO1  | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 |
|---------------------|------|-----|-----|------|-----|-----|-----|-----|
| CO1                 | 3    | -   | -   | -    | -   | -   | -   | -   |
| CO2                 | -    | 2   | -   | 3    | -   | -   | -   | -   |
| CO3                 | -    | 3   | -   | 2    | -   | -   | -   | -   |
| CO4                 | -    | 3   | -   | -    | -   | -   | -   | -   |
| Weighted<br>Average | 0.75 | 2   | -   | 1.25 | -   | -   | -   | -   |

## SC 17: FOREIGN EXCHANGE MANAGEMENT

#### **Course Outcomes**

- CO-1: Acquisition of conceptual knowledge on international monetary system
- CO-2: Overview on FOREX management and FOREX reserve
- CO-3: Application of hedging against foreign exchange exposure
- CO-4: Forecasting foreign exchange rates using various techniques.

| CO\PO               | PO1  | PO2  | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 |
|---------------------|------|------|-----|-----|------|-----|-----|-----|
| CO1                 | 3    | -    | -   | -   | -    | -   | -   | -   |
| CO2                 | 3    | 2    | -   | -   | 3    | -   | -   | -   |
| CO3                 | 2    | 2    | -   | -   | 2    | -   | -   | -   |
| CO4                 | 1    | 3    | -   | -   | 2    | -   | -   | -   |
| Weighted<br>Average | 2.25 | 1.75 | -   | -   | 1.75 | -   | -   | -   |

#### **Course Articulation Matrix**

## SC 19 - ELECTIVE GROUP A: BUSINESS TAXATION PAPER 2: CORPORATE TAX LAW AND PLANNING

#### **Course Outcomes**

CO-1: Knowing overview of corporate tax system in India

CO-2: Exposure on practical approaches towards taxable income of the company

CO-3: Application of Income tax rules in managerial decisions such as, make or buy, dividend decisions, etc.

CO-4: Online filing of returns for corporate assesse

| CO\PO               | PO1 | PO2  | PO3  | PO4 | PO5 | PO6 | PO7 | PO8  |
|---------------------|-----|------|------|-----|-----|-----|-----|------|
| CO1                 | 3   | 2    | -    | -   | -   | -   | -   | -    |
| CO2                 | 2   | 3    | -    | -   | -   | -   | -   | -    |
| CO3                 | 3   | 3    | -    | -   | -   | -   | -   | -    |
| CO4                 | 2   | 3    | 3    | -   | -   | -   | -   | 3    |
| Weighted<br>Average | 2.5 | 2.75 | 0.75 | -   | -   | -   | -   | 0.75 |

**Course Articulation Matrix** 

## **SC 20: ELECTIVE GROUP B – FINANCIAL ACCOUNTING**

## **PAPER 2: CONTEMPORARY AREAS OF FINANCIAL ACCOUNTING**

## **Course Outcomes:**

CO1: Provide Detailed insight of Human resource Accounting.

CO2: Understand concept of Accounting for Bonus shares, right shares and dividend.

CO3: Application of different methods of Inflation accounting.

CO4: Understand the concept of environmental accounting.

| CO\PO               | PO1 | PO2  | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
|---------------------|-----|------|-----|-----|-----|-----|-----|-----|
| CO1                 | 2   | 2    | -   | -   | -   | -   | -   | -   |
| CO2                 | 2   | 1    | -   | -   | -   | -   | -   | -   |
| CO3                 | 1   | 3    | -   | -   | -   | -   | -   | -   |
| CO4                 | 3   | 3    | -   | 2   | -   | -   | -   | -   |
| Weighted<br>Average | 2   | 2.25 | -   | 0.5 | -   | -   | -   | -   |

## SC 21 -ELECTIVE GROUP C: FINANCIAL MANAGEMENT PAPER 2: FINANCIAL DERIVATIVES

#### **Course Outcomes:**

- CO1 Understand the various financial derivative instruments such as options, futures, swaps and other derivative securities.
- CO2 Application of derivative instruments in managing the risk of investing and hedging activity at the individual and the corporate level.
- CO3 Comprehend the economic environment in which derivative instruments operate.
- CO4 Employ theoretical valuation methods to pricing of financial derivative instruments by using different valuation models

| CO\PO               | PO1  | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8  |
|---------------------|------|-----|-----|-----|-----|-----|-----|------|
| CO1                 | 3    | -   | -   | -   | -   | -   | -   | -    |
| CO2                 | 2    | 3   | 1   | -   | 2   | -   | -   | 2    |
| CO3                 | 2    | 2   | -   | -   | -   | -   | -   |      |
| CO4                 | 2    | 3   | 1   | -   | 2   | -   | -   | 1    |
| Weighted<br>Average | 2.25 | 2   | 0.5 | -   | 1   | -   | -   | 0.75 |

# SC 22 -ELECTIVE GROUP D: HUMAN RESOURCE MANAGEMENT PAPER 2:INDUSTRIAL RELATIONS & COLLECTIVE BARGAINING

## **Course Outcomes:**

CO1: Gain the theoretical, practical and ethical perspective on various aspects of Industrial Relations.

CO2: Aware of the present state of Industrial Relations in India.

CO3: Realise the various processes and procedures of handling Employee Relations.

CO4: Acquaint with the concepts, principles and issues connected with Trade Unions, Collective Bargaining and Grievance redressal

| CO\PO    | PO1 | PO2 | PO3 | PO4  | PO5 | PO6  | PO7 | PO8 |
|----------|-----|-----|-----|------|-----|------|-----|-----|
| CO1      | 3   | 3   | -   | 3    | -   | -    | -   | -   |
| CO2      | 2   | 3   | -   | -    | -   | -    | -   | -   |
| CO3      | 2   | 3   | -   | -    | -   | 3    | -   | -   |
| CO4      | 3   | 3   | -   | -    | -   | -    | -   | -   |
| Weighted | 2.5 | 3   | -   | 0.75 | -   | 0.75 | -   | -   |
| Average  |     |     |     |      |     |      |     |     |

## **Course Articulation Matrix**

## SC23 - ELECTIVE GROUP E: MANAGEMENT ACCOUNTING

## **PAPER 2: COST MANAGEMENT**

## **Course Outcomes**

At the end of the course, the students will be able to know:

CO-1: Application of tools and techniques in activity-based cost for managerial decision

CO-2: Practical approaches on cost volume profit analysis

CO-3; Theoretical and practical approaches on various Pricing strategies

CO-4: Application of operation research and statistical tools in cost management.

| CO\PO               | PO1  | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8  |
|---------------------|------|-----|------|-----|-----|-----|-----|------|
| CO1                 | 2    | 3   | -    | -   | 2   | -   | -   | -    |
| CO2                 | 2    | 3   | -    | -   | 2   | -   | -   | -    |
| CO3                 | 3    | 3   | -    | -   | 3   | -   | -   | -    |
| CO4                 | 2    | 3   | 3    | -   | 3   | -   | -   | 3    |
| Weighted<br>Average | 2.25 | 3   | 0.75 | -   | 2.5 | -   | -   | 0.75 |

## **Course Articulation Matrix**

\*\*\*\*\*

## **DEPARTMENT OF BIOCHEMISTRY**

### M.Sc. in Bio Chemistry

### **Course outcomes and course Articulation Matrix with tables**

#### **Programme Outcomes:**

- 1. Develop an abilityto acquirein-depththeoretical and practicalknowledgeof Biochemistry
- 2. To demonstrate an understanding of structure and metabolism of biological macromolecules and tounderstandthe regulation and disorders of metabolic pathways.
- 3. The principles of bioenergetics and enzyme catalysis;
- 4. Understanding of metabolic pathway among prokaryotes and eukaryotes.
- Gainproficiencyinlaboratorytechniquesinbiochemistryandbiologicalsciences likeimmunology,physiology, molecularbiology,enzymologyandbiotechnology.
- 6. Develop an ability to understand the technical aspects of existing
- technologies and to providecost efficient solutions that help in addressing the biological and medical challenges faced bymankind.
- 7. The practical skills are improved which help their research experienceamongacademicor industrial R&D programs.
- 8. Understand the published literature by using online and offline methods; to be able to apply thescientific method to the processes of experimentation and hypothesis testing.
- 9. Develop an abilityto translate knowledge of Biochemistry to address environmental, intellectual, societal, and ethicalissuesthrough innovativethinkingand research strategies.
- 10. Develop an ability to put forward the scientific perception to a person/ community belonging tonon-sciencebackground.
- 11. To inculcateskillsforteachinginacademicinstitutionsforundergraduateand postgraduate students.
- 12. Developconfidenceintakingcompetitiveexaminationinthefieldoflifesciencesb othinIndia andabroadso that theycan pursue higher education.

#### I Semester courses

#### 21F101 FUNDAMENTALS OF BIOCHEMISTRY

#### **Course outcomes**

- 1. Knowledge of Chemistry of biomolecules.
- 2. The fundamental principles in sequencing of DNA.
- 3. Importance of biomolecules in the biological system.
- 4. Structure and function of enzymes.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 2   | 2   | 2   | 1   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 2   | 2   | 1   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 2   | 1   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |

#### **Course Articulation Matrix**

### **21F102 TECHNIQUES IN BIOLOGY**

#### **Course outcomes**

- 1. Techniques in Biology.
- 2. The fundamental principles in cell homogenization.
- 3. Importanceofbioanalyticaltechniques.
- 4. Significanceofradiochemistryandmass spectroscopy.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 2   | 2   | 2   | 1   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 2   | 2   | 1   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 2   | 1   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3    | 3    | 3    |

### 21F103 MOLECULAR CELL BIOLOGY

#### **Course outcomes**

- 1. Structuralandfunctional components of acell.
- 2. Role of cell cycle and its regulation.
- 3. Phytochemicalsincancertreatment and stemscells.
- 4. Receptorsofsignaling pathways.

#### **Course Articulation Matrix**

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### 21F104 PRACTICAL 1A

#### **Course outcomes**

- 1. Proficiencyinlaboratorytechniquesinbiologicalsciences.
- 2. Practical applications of various chromatography techniques in separation of bioactive compounds.
- 3. Estimation of different biomolecules using colorimeter.
- 4. Proficiencyinpreparingatourreportdocumentaftervisitingbiologybasedindustriesandresearch institutes.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### 21F105 PRACTICAL 1B

#### **Course outcomes**

- 1. Proficiencyinmicroscopic examination of cells.
- 2. Proficiency molecular cellbiology experiments.
- 3. Proficiency in solving genetic problems.
- 4. Proficiencyin presenting aseminaron aspecific topic and discuss the concept.

|     | Course AI liculation Matrix |     |     |     |     |     |     |     |     |      |      |      |
|-----|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| PO  | PO1                         | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| co  |                             |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3                           | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3                           | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3                           | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3                           | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **Course Articulation Matrix**

#### **21F106 GENETICS**

#### **Course outcomes**

- 1. Modelorganisms availabletostudygenetics.
- 2. Mutationandmutagenesis.
- 3. Detailed account on transposable elements and transpositions.
- 4. TypesofDNArecombinationandDNArepair.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### 21F107 MICROBIOLOGY

#### **Course outcomes**

- 1. Identification of bacteria through Bergy's manual.
- 2. The fundamentals of antibiotics.
- 3. The beneficial and harmful effects of microorganisms.
- 4. Knowledge about emerging infectious diseases

|     | Course Articulation Matrix |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| PO  | PO1                        | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| со  |                            |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3                          | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3                          | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3                          | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3                          | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **Course Articulation Matrix**

#### **II** Semester courses

#### 21F201 MOLECULAR BIOLOGY

#### **Course outcomes**

- 1. The idea about the principles behind molecularbiology.
- 2. Understand the molecular tools and its application in basic research and applied research in various fields of life sciences.
- 3. Understand regulation of gene expression.
- 4. Significance of non-coding RNA.

| <b>PO</b> | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| co        |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1       | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2       | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3       | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4       | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **21F202 METABOLISM OF CARBOHYDRATES**

#### **Course outcomes**

- 1. Chemistry of carbohydrate metabolism.
- 2. The fundamental thermodynamic principles in metabolism.
- 3. Importance of carbohydrate metabolism.
- 4. Role of hormones in the regulation of carbohydrate metabolism.

|     | Course Articulation Matrix |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| PO  | PO1                        | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| Со  |                            |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3                          | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3                          | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3                          | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3                          | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

| Course in the analysis in the second | Course | Articulation | Matrix |
|--------------------------------------|--------|--------------|--------|
|--------------------------------------|--------|--------------|--------|

#### 21F203 BIOORGANIC AND BIOINORGANIC CHEMISTRY

#### **Course outcomes**

- 1. The basics in chemistry.
- 2. Theories of coordination complexes
- 3. To understand the organic reactions.
- 4. Different types of heterocyclic compounds

### **Course Articulation Matrix**

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

## 21F204 PRACTICAL 2A

#### **Course outcomes**

1. Proficiencyin laboratorytechniques inmolecular biologyand energymetabolism.
- 2. Proficiencyintheexperimentsto articulatethemetabolicpathways.
- 3. Efficacyin testingthemarkersforhealth and disease.
- 4. Proficiencyinrealtimefunctioningoftheindustriesandinstitutesofnationala ndinternationalrepute.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |

## 21F205 PRACTICAL 2B

### **Course outcomes**

- 1. Proficiencyin isolation of cell organelles and its assessment.
- 2. Proficiencyinisolation of biomolecules and its analysis.
- 3. Clinical relevance of biomolecules.
- 4. Isolation and understanding the significance of various lipids.

## **Course Articulation Matrix**

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |

## **21F206 METABOLISM OF LIPIDS**

- 1. The basics of metabolism.
- 2. Role of lipids in metabolism.
- 3. Role of lipid mediators.
- 4. Interactions among the metabolic enzymes.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **III Semester courses**

### 21F301 IMMUNOLOGY

### **Course outcomes**

- 1. Organs, tissues, cells and molecules of the immune system
- 2. The immunological methods used to detect the disease
- 3. How the knowledge of immunology can be transferred into clinical decision-making throughcase studies presented in class.
- 4. Importance of immunological techniques

### **Course Articulation Matrix**

| PO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1      | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
|          | -   | -   | -   | -   | -   | -   | 0   | -   | -   | Ŭ    | -    | -    |
| CO2      | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3    | 3    | 3    |
| CO3      | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4      | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

### 21F302 ENZYMOLOGY

- 1. Chemistry of enzyme catalysis.
- 2. Enzyme kinetics.

- 3. Comparison of Isozymes to Multifunctional enzymes
- 4. Regulation of enzyme activity

|     |     |     |     |     | Cou |     | i cuiuvi |     |     |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|------|------|------|
| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7      | PO8 | PO9 | PO10 | PO11 | PO12 |
| co  |     |     |     |     |     |     |          |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3        | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 2        | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 3        | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3   | 3        | 3   | 3   | 3    | 3    | 3    |

## 21F303 PRACTICAL 3A

## **Course outcomes**

- 1. Proficiencyin laboratorytechniques in immunology.
- 2. Proficiency in understand the clinical significance of different end products of metabolism.
- 3. Proficiencyin laboratorytechniques inamino acid metabolism
- 4. Proficiencyinpreparingatourreportdocumentaftervisitingimmunologyorb iologybædndustries and research institutes.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |

### **Course Articulation Matrix**

## 21F304 PRACTICAL 3B

- 1. Proficiencyin enzyme isolation and purification techniques.
- 2. Proficiency in enzyme kinetics.
- 3. Proficiency in assessmentofclinicallyrelevantenzymes.
- 4. ProficiencyinunderstandingaresearcharticleinthefieldofBiochemistryandrelatedstrea ms,andpresent as aplatform presentation.

|     |     |     |     |     | Cou | 130 111 | iiculati |     | UI IA |      |      |      |
|-----|-----|-----|-----|-----|-----|---------|----------|-----|-------|------|------|------|
| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7      | PO8 | PO9   | PO10 | PO11 | PO12 |
| со  |     |     |     |     |     |         |          |     |       |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3       | 3        | 3   | 3     | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3       | 3        | 3   | 3     | 3    | 3    | 3    |
| CO3 | 3   | 2   | 3   | 3   | 3   | 3       | 3        | 3   | 3     | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 2   | 3   | 2       | 3        | 3   | 3     | 3    | 3    | 3    |

### 21F305 METABOLISM OF NUCLEIC ACID

### **Course outcomes**

- a. Chemistry of nucleic acid metabolism. .
- b. Importance of nucleic acid metabolism.
- c. Mechanism of photosynthesis and nitrogen metabolism.

|     |     |     |     |     | Cou | 1 SC 1 M | iiculati |     | UI IA |      |      |      |
|-----|-----|-----|-----|-----|-----|----------|----------|-----|-------|------|------|------|
| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6      | PO7      | PO8 | PO9   | PO10 | PO11 | PO12 |
| со  |     |     |     |     |     |          |          |     |       |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3        | 3        | 3   | 3     | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3        | 2        | 3   | 3     | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2        | 3        | 3   | 3     | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3        | 3        | 3   | 3     | 3    | 3    | 3    |

## **Course Articulation Matrix**

### 21F306 METABOLISM OF AMINO ACIDS AND PROTEINS

- 1. Chemistry of nucleic acid metabolism.
- 2. Importance of nucleic acid metabolism.
- 3. Mechanism of photosynthesis
- 4. Nitrogen metabolism.

|     |     |     |     |     |     | 150111 |     | • •• | •1 111 |      |      |      |
|-----|-----|-----|-----|-----|-----|--------|-----|------|--------|------|------|------|
| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6    | PO7 | PO8  | PO9    | PO10 | PO11 | PO12 |
| Со  |     |     |     |     |     |        |     |      |        |      |      |      |
| CO1 | 3   | 3   | 3   | 3   | 3   | 3      | 3   | 3    | 3      | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 3      | 2   | 3    | 3      | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2      | 3   | 3    | 3      | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 3      | 3   | 3    | 3      | 3    | 3    | 3    |

#### **IV** Semester courses

## 21F401 PROJECT WORK

### **Course outcomes**

- 1. Enhanced laboratoryskills.
- 2. Efficiency in identifying a research problem and plan a research work.
- 3 Appropriate review of literature and selection of proper laboratory methods.
- 4. Application and importance of statistics.
- 5. Maketheappropriate conclusionsoftheresearchdata.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 2   | 2   | 3   | 3   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 2   | 2   | 3   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 2   | 2   | 3   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 2   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **Course Articulation Matrix**

## **21F403 BIOTECHNOLOGY**

- 1. Understand the principle and methodology employed in the growth of microorganisms
- 2. Understand the various parameters affecting the growth of industrially important microorganisms.
- 3. Understand the importance of plant and animal cell culture to produced therapeutically important secondarymetabolites
- 4. Understand the applications of industrial fermenters.

| PO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Со  |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 2   | 2   | 3   | 3   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2 | 2   | 2   | 3   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3 | 2   | 2   | 3   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4 | 2   | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |

**Course Articulation Matrix** 

# DEPARTMENT OF BIOTECHNOLOGY M.Sc. in Biotechnology

#### **Course Outcomes and Course Articulation Matrix with Tables**

#### **Programme Outcomes:**

- 1. The programme focuses on basic understanding in the diverse fields of biotechnology.
- 2. The programme emphasis on scientific research and its industrial applications.
- 3. The programme gives emphasis on skill development and research training in the field of biotechnology.
- 4. It enables the students to plan, design, execute, analyze, and solve industrial and research associated problems.
- 5. The objective of this programme is to make students competitive.
- 6. This programme is designed in such a way that they attain successful career in industries, research and academic institutions.
- 7. The programmes comprehend and integrate theoretical and practical skills.
- 8. The programme imparts knowledge in basic and applied disciplines of biotechnology.
- 9. The students are motivated to develop a research plan to solve biotechnological problems.
- 10. The Programme enhances the ability to design new biotechnological products
- 11. The students can apply knowledge of biotechnology in an integrated manner.
- 12. The Programme is designed in such a way that the student is trained enough to take employment in diverse areas of biotechnology as well as for further higher studies.

## I Semester courses

#### Molecular Cell Biology (FCHC:): 22D101

## **Course Outcomes**

- 1. The structures and purposes of basic components of prokaryotic and eukaryoticcells, especially macromolecules, membranes, and organelles.
- 2. Cell cycle and cellular processes.
- 3. Concept of cancer biology and signal transduction.
- 4. Phytochemicals in cancer treatment and stems cells.

|                                             | SEMESTER I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |    |   |    |      |      |      |      |    |     |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|---|----|------|------|------|------|----|-----|--|--|--|
| Course Name : MOLECULAR CELL BIOLOGY (FCHC) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |    |   |    |      |      |      |      |    |     |  |  |  |
| РО                                          | PO     PO-     PO- |   |     |    |   |    |      |      |      |      |    |     |  |  |  |
| СО                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Π | 111 | IV |   | VI | VII  | VIII | XI   | X    | XI | XII |  |  |  |
| CO1                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2   | 3  | 2 | 3  | 3    | 3    | 3    | 3    | 3  | 3   |  |  |  |
| CO2                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2   | 3  | 2 | 3  | 2    | 2    | 2    | 2    | 3  | 3   |  |  |  |
| CO3                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2   | 3  | 2 | 3  | 2    | 2    | 2    | 2    | 3  | 3   |  |  |  |
| CO4                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2   | 3  | 2 | 3  | 2    | 2    | 2    | 2    | 3  | 3   |  |  |  |
| Weighted<br>Average                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2   | 3  | 2 | 3  | 2.25 | 2.25 | 2.25 | 2.25 | 3  | 3   |  |  |  |

## PRACTICAL IB:Molecular Cell Biology: 22D105

### **Course Outcome:**

- 1. Structure of prokaryotic and eukaryotic cells using staining techniques
- 2. Structure of cellular organelle.
- 3. Enumeration & Measurement of cell.
- 4. Analysis of growth curve

|                              | SEMESTER I |                                       |     |     |     |     |     |     |     |     |     |     |  |  |  |
|------------------------------|------------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| Course Name : PRACTICAL - IB |            |                                       |     |     |     |     |     |     |     |     |     |     |  |  |  |
| PO                           | P          | PO-                                   | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- |  |  |  |
| СО                           | 0-         | - II 111 IV V VI VII VIII XI X XI XII |     |     |     |     |     |     |     |     |     |     |  |  |  |
|                              | 1          |                                       |     |     |     |     |     |     |     |     |     |     |  |  |  |
| CO1                          | 3          | 3                                     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO2                          | 3          | 3                                     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO3                          | 3          | 3                                     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO4                          | 3          | 3                                     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| Weighte                      | 3          | 3                                     | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| d                            |            |                                       |     |     |     |     |     |     |     |     |     |     |  |  |  |
| Average                      |            |                                       |     |     |     |     |     |     |     |     |     |     |  |  |  |

## FUNDAMENTALSOF BIOCHEMISTRY (FCHC): 22D102

### **Course Outcome:**

- 1. The basics of biomolecules.
- 2. Functions of biomolecules in the biological system.
- 3. Interactions among the biomolecules in the nature.
- 4. The fundamental principles in sequencing of DNA.

|                                                 | SEMESTER I                          |     |                     |     |     |     |     |      |     |     |     |     |  |  |  |
|-------------------------------------------------|-------------------------------------|-----|---------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|--|
| Course Name : FUNDAMENTALSOF BIOCHEMISTRY(FCHC) |                                     |     |                     |     |     |     |     |      |     |     |     |     |  |  |  |
| PO                                              | <b>PO-1</b>                         | PO- | PO-                 | PO- | PO- | PO- | PO- | PO-  | PO- | PO- | PO- | PO- |  |  |  |
| CO                                              | II 111 IV V VI VII VIII XI X XI XII |     |                     |     |     |     |     |      |     |     |     |     |  |  |  |
| CO1                                             | 3                                   | 2   | 2                   | 2   | 2   | 2   | 2   | 2    | 2   | 2   | 3   | 3   |  |  |  |
| CO2                                             | 3                                   | 2   | 2 2 2 2 2 2 3 2 3 3 |     |     |     |     |      |     |     |     |     |  |  |  |
| CO3                                             | 3                                   | 2   | 2                   | 2   | 2   | 2   | 2   | 2    | 3   | 3   | 3   | 3   |  |  |  |
| CO4                                             | 3                                   | 2   | 2                   | 2   | 2   | 2   | 2   | 2    | 3   | 3   | 3   | 3   |  |  |  |
| Weig                                            | 3                                   | 2   | 2                   | 2   | 2   | 2   | 2   | 2.25 | 2.5 | 2.5 | 3   | 3   |  |  |  |
| Aver                                            |                                     |     |                     |     |     |     |     |      |     |     |     |     |  |  |  |
| age                                             |                                     |     |                     |     |     |     |     |      |     |     |     |     |  |  |  |

### PRACTICAL IA: FUNDAMENTALSOF BIOCHEMISTRY: 22D104

### **Course Outcome:**

- 1. Understanding the normality and molarity concepts.
- 2. Methodology applied to prepare buffers and solutions.
- 3. Estimating the carbohydrates, proteins and aminoacids.
- 4. Analysis of saponification and iodine value in lipids.

| 5.<br>                      | SEMESTER I                               |   |     |    |   |    |     |      |    |   |    |     |  |  |
|-----------------------------|------------------------------------------|---|-----|----|---|----|-----|------|----|---|----|-----|--|--|
| Course Name: PRACTICAL – IA |                                          |   |     |    |   |    |     |      |    |   |    |     |  |  |
| РО                          | PO PO PO- PO- PO- PO- PO- PO- PO- PO- PO |   |     |    |   |    |     |      |    |   |    |     |  |  |
| СО                          | -1                                       | Π | 111 | IV | V | VI | VII | VIII | XI | X | XI | XII |  |  |
| CO1                         | 3                                        | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO2                         | 3                                        | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO3                         | 3                                        | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO4                         | 3                                        | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| Weight<br>ed<br>Averag      | 3                                        | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| e                           |                                          |   |     |    |   |    |     |      |    |   |    |     |  |  |

## **TECHNIQUES IN BIOLOGY (FCHC): 22D103**

## **Course Outcome:**

- 1. This paper is designed to give a brief introduction to most of the techniques used in the field of biological analyses.
- 2. Nevertheless, the topics in this paper are to be taught compendiously.
- 3. The fundamental principles in cell homogenization.
- 4. Importance of bioanalytical techniques.

| 15                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   | SE | MESTE | E <mark>R I</mark> |   |   |   |   |   |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----|-------|--------------------|---|---|---|---|---|--|--|
|                             | Course Name : TECHNIQUES IN BIOLOGY (FCHC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |    |       |                    |   |   |   |   |   |  |  |
| PO                          | PO     PO-     PO- |   |   |   |    |       |                    |   |   |   |   |   |  |  |
| CO                          | II 111 IV V VI VII VIII XI X XI XII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |    |       |                    |   |   |   |   |   |  |  |
| C01                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 2 | 3 | 2  | 3     | 2                  | 2 | 2 | 2 | 3 | 3 |  |  |
| CO2                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 2 | 3 | 2  | 3     | 2                  | 2 | 2 | 2 | 3 | 3 |  |  |
| CO3                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 2 | 3 | 2  | 3     | 2                  | 2 | 2 | 2 | 3 | 3 |  |  |
| CO4                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 2 | 3 | 2  | 3     | 2                  | 2 | 2 | 2 | 3 | 3 |  |  |
| Weig<br>hted<br>Aver<br>age | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 2 | 3 | 2  | 3     | 2                  | 2 | 2 | 2 | 3 | 3 |  |  |

## PRACTICAL IA: TECHNIQUES IN BIOLOGY: 22D104

## **Course Outcome:**

- 1. Hands on training in chromatographic techniques
- 2. Analysis of biomolecules using spectroscopic techniques
- 3. Estimating the enzymes and their activity.
- 4. The concepts of homogenization and sedimentation and working of centrifugation techniques.

| 73                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |    |   |    |     |      |    |   |    |     |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|---|----|-----|------|----|---|----|-----|--|--|
|                      | SEMESTER I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |    |   |    |     |      |    |   |    |     |  |  |
| ÷.                   | Course Name : PRACTICAL - IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |    |   |    |     |      |    |   |    |     |  |  |
| PO                   | PO     PO-     PO- |   |     |    |   |    |     |      |    |   |    |     |  |  |
| СО                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | п | 111 | IV | V | VI | VII | VIII | XI | X | XI | XII |  |  |
| <b>CO1</b>           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO2                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO3                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO4                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |
| Weig<br>hted<br>Aver | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 3  | 3   | 3    | 3  | 3 | 3  | 3   |  |  |

## MICROBIOLOGY (FCSC): 22D107

## **Course Outcome:**

- 1. The characteristics of microbes, their taxonomy and diversity.
- 2. The growth of microbes and their control.
- 3. The relationship between microbes and environment.
- 4. The beneficial and harmful effects of microorganisms.

|                             |                            |     |     |     | SE  | EMEST | ERI |      |     |     |     |     |  |  |
|-----------------------------|----------------------------|-----|-----|-----|-----|-------|-----|------|-----|-----|-----|-----|--|--|
|                             | Course Name : MICROBIOLOGY |     |     |     |     |       |     |      |     |     |     |     |  |  |
| PO                          | PO-1                       | PO- | PO- | PO- | PO- | PO-   | PO- | PO-  | PO- | PO- | PO- | PO- |  |  |
| СО                          | -                          | Π   | 111 | IV  | V   | VI    | VII | VIII | XI  | X   | XI  | XII |  |  |
| CO1                         | 3                          | 3   | 2   | 3   | 2   | 3     | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO2                         | 3                          | 3   | 2   | 3   | 2   | 3     | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO3                         | 3                          | 3   | 2   | 3   | 2   | 3     | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO4                         | 3                          | 3   | 2   | 3   | 2   | 3     | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age | 3                          | 3   | 2   | 2   | 2   | 3     | 3   | 3    | 2   | 3   | 2   | 3   |  |  |

## PRACTICALS IB: MICROBIOLOGY: 22D105

## **Course Outcome:**

- 1. Performing different aseptic techniques to grow microorganisms.
- 2. Identification of cultured microorganisms using staining techniques.
- 3. Determine the microbes using microscopic and biochemical analysis.
- 4. Understanding practically the role of antibiotics.

| SEME                        | STER I |     |     |     |     |     |     |      |     |     |     |     |  |  |
|-----------------------------|--------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|
| Course Name: PRACTICAL - IB |        |     |     |     |     |     |     |      |     |     |     |     |  |  |
| PO                          | PO-1   | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                          |        | п   | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |  |
| CO1                         | 3      | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO2                         | 3      | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO3                         | 3      | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| CO4                         | 3      | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |
| Weig                        | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| hted                        |        |     |     |     |     |     |     |      |     |     |     |     |  |  |
| Aver                        |        |     |     |     |     |     |     |      |     |     |     |     |  |  |
| age                         |        |     |     |     |     |     |     |      |     |     |     |     |  |  |

#### **II** Semester courses

### **MOLECULAR BIOLOGY (FCHC): 22D201**

#### **Course outcome:**

- 1. To understand biological activities and metabolism at DNA and protein level
- 2. The course gives an in-depth insight into the molecular aspects of life the central dogma.
- It explains molecular aspects of genes and its regulation- genome- gene expressions heredity- recombination- protein synthesis- molecular basis of diseases- mutations genetic analysis etc.
- 4. Understand the molecular tools and its application in basic research and applied research in various fields of life sciences.

|                             |                                       |     |     |     | SE  | MESTE | RII |      |     |     |     |     |  |  |
|-----------------------------|---------------------------------------|-----|-----|-----|-----|-------|-----|------|-----|-----|-----|-----|--|--|
|                             | Course Name : MOLECULAR BIOLOGY(FCHC) |     |     |     |     |       |     |      |     |     |     |     |  |  |
| PO                          | PO-1                                  | PO- | PO- | PO- | PO- | PO-   | PO- | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                          | 8                                     | Π   | 111 | IV  | V   | VI    | VII | VIII | XI  | X   | XI  | XII |  |  |
| CO1                         | 3                                     | 3   | 3   | 3   | 3   | 3     | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO2                         | 3                                     | 3   | 3   | 3   | 3   | 3     | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO3                         | 3                                     | 3   | 3   | 3   | 3   | 3     | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO4                         | 3                                     | 3   | 3   | 3   | 3   | 3     | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age | 3                                     | 3   | 3   | 3   | 3   | 3     | 3   | 3    | 3   | 3   | 3   | 3   |  |  |

## PRACTICALS IIA: MOLECULAR BIOLOGY: 22D203

## **Course Outcome:**

- 1. Perfuming the methodology applied to extract DNA & RNA from different sources.
- 2. Methods applied to purify the nucleic acids,
- 3. Estimation of extracted and purified DNA & RNA
- 4. Determining the purity, concentration and applying it for different digests and ligates.

|                             |                               |     |     |     | SE  | MESTE | ER II |      |     |     |     |     |  |  |
|-----------------------------|-------------------------------|-----|-----|-----|-----|-------|-------|------|-----|-----|-----|-----|--|--|
|                             | Course Name : PRACTICAL - IIA |     |     |     |     |       |       |      |     |     |     |     |  |  |
| PO                          | PO-1                          | PO- | PO- | PO- | PO- | PO-   | PO-   | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                          | -                             | п   | 111 | IV  | V   | VI    | VII   | VIII | XI  | x   | XI  | XII |  |  |
| CO1                         | 3                             | 3   | 3   | 3   | 3   | 3     | 3     | 3    | 3   | 3   | 3   | 3   |  |  |
| CO2                         | 3                             | 3   | 3   | 3   | 3   | 3     | 3     | 3    | 3   | 3   | 3   | 3   |  |  |
| CO3                         | 3                             | 3   | 3   | 3   | 3   | 3     | 3     | 3    | 3   | 3   | 3   | 3   |  |  |
| CO4                         | 3                             | 3   | 3   | 3   | 3   | 3     | 3     | 3    | 3   | 3   | 3   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age | 3                             | 3   | 3   | 3   | 3   | 3     | 3     | 3    | 3   | 3   | 3   | 3   |  |  |

## **GENETIC ENGINEERING (FCHC): 22D202**

## **Course Outcome:**

- 1. To understand cloning and expression vectors.
- 2. Methods involved in gene manipulation and techniques of gene analysis.
- 3. The vast knowledge of gene editing.
- 4. The knowledge about the Ex vivo and in vivo gene therapy

| SEME                                     | STER I | I   |     |     |     |     |     |      |     |     |     |     |  |
|------------------------------------------|--------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
| Course Name : GENETIC ENGINEERING (FCHC) |        |     |     |     |     |     |     |      |     |     |     |     |  |
| PO                                       | PO-1   | PO-  | PO- | PO- | PO- | PO- |  |
| CO                                       | 5      | п   | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |
| CO1                                      | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO2                                      | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO3                                      | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO4                                      | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| Weig<br>hted<br>Aver<br>age              | 3      | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |

### PRACTICAL IIA: GENETIC ENGINEERING: 22D203

## Course Outcome: Students should study this paper to know -

- 1. Performing the competent cell preparation.
- 2. Isolating the plasmid and inducing the gene expression.
- 3. Determining the protease activity in extracted protein.
- 4. Producing the recombinant protein.

|                               | SEMESTER II                         |                           |     |     |     |     |     |     |     |     |     |     |  |  |  |
|-------------------------------|-------------------------------------|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| Course Name : PRACTICAL - IIA |                                     |                           |     |     |     |     |     |     |     |     |     |     |  |  |  |
| PO                            | PO-1                                | PO-                       | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- | PO- |  |  |  |
| CO                            | II 111 IV V VI VII VIII XI X XI XII |                           |     |     |     |     |     |     |     |     |     |     |  |  |  |
| CO1                           | 3                                   | 3                         | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO2                           | 3                                   | 3 3 3 3 3 3 3 3 3 3 3 3 3 |     |     |     |     |     |     |     |     |     |     |  |  |  |
| CO3                           | 3                                   | 3                         | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO4                           | 3                                   | 3                         | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| Weig<br>hted<br>Aver<br>age   | 3                                   | 3                         | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |

## MOLECULAR DIAGNOSTICS(FCSC): 22D205

### **Course Outcome:**

- 1. The course focuses on learning and understanding how the various molecular techniques that were studied can be developed and utilized in diagnosis.
- 2. The course explains common analytical techniques and molecular techniques related to the development and use of diagnostics.
- 3. Students learn about the clinical applications of molecular diagnostic in patients with infectious disease.
- They can find their future focus in biotechnology companies developing and marketing Diagnostic kits.

|                             |                                                                             |     |     |     | SE  | MESTE | RII |     |     |     |     |     |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|--|--|--|
|                             | Course Name : MOLECULAR DIAGNOSTICS(FCSC)                                   |     |     |     |     |       |     |     |     |     |     |     |  |  |  |
| PO                          | PO-1                                                                        | PO- | PO- | PO- | PO- | PO-   | PO- | PO- | PO- | PO- | PO- | PO- |  |  |  |
| CO                          | II     111     IV     V     VI     VII     VIII     XI     X     XI     XII |     |     |     |     |       |     |     |     |     |     |     |  |  |  |
| CO1                         | 3                                                                           | 3   | 3   | 3   | 3   | 3     | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO2                         | 3                                                                           | 3   | 3   | 3   | 3   | 3     | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO3                         | 3                                                                           | 3   | 3   | 3   | 3   | 3     | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| CO4                         | 3                                                                           | 3   | 3   | 3   | 3   | 3     | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |
| Weig<br>hted<br>Aver<br>age | 3                                                                           | 3   | 3   | 3   | 3   | 3     | 3   | 3   | 3   | 3   | 3   | 3   |  |  |  |

## PRACTICALS IIB: MOLECULAR DIAGNOSTICS: 22D204

#### **Course Outcome:**

- 1. The diagnosis of different hormones
- 2. The practical training of genome resolution and analysis
- 3. The metagenomic approach to identify the microbes.
- 4. Learning the techniques involved in microbial diagnosis such as PCR, ELISA.

|                               | SEMESTER II |     |     |     |     |     |     |      |     |     |     |     |  |  |
|-------------------------------|-------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|
| Course Name : PRACTICAL - IIB |             |     |     |     |     |     |     |      |     |     |     |     |  |  |
| PO                            | <b>PO-1</b> | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                            |             | II  | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |  |
| CO1                           | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO2                           | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO3                           | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO4                           | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age   | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |

## FOOD AND ENVIRONMENTAL BIOTECHNOLOGY(SC): 22D206

### **Course Outcome:**

- 1. The knowledge about fermentation and fermented products and nutrition.
- 2. The functional foods and genetically modified foods.
- 3. The detailed account of Environment and bioremediation of pollutants.
- 4. The knowledge of phytoremediation

| SEMESTER II                                             |      |     |     |     |     |     |     |      |     |     |     |     |  |
|---------------------------------------------------------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
| Course Name : FOOD AND ENVIRONMENTAL BIOTECHNOLOGY (SC) |      |     |     |     |     |     |     |      |     |     |     |     |  |
| PO                                                      | PO-1 | PO-  | PO- | PO- | PO- | PO- |  |
| CO                                                      |      | п   | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |
| CO1                                                     | 3    | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |
| CO2                                                     | 3    | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |
| CO3                                                     | 3    | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |
| CO4                                                     | 3    | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |
| Weig                                                    | 3    | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |
| hted                                                    |      |     |     |     |     |     |     |      |     |     |     |     |  |
| Aver                                                    |      |     |     |     |     |     |     |      |     |     |     |     |  |
| age                                                     |      |     |     |     |     |     |     |      |     |     |     |     |  |

## Practical II B: FOOD AND ENVIRONMENTAL BIOTECHNOLOGY: 22D204

## **Course Outcome:**

- 1. The methods of water and soil sampling.
- 2. The determination of impurities in water.
- 3. Estimating the BOD & COD of water
- 4. Methods to understand food adulterants and contaminates.

| Course Name : PRACTICAL - IIB |      |     |     |     |     |     |     |      |     |     |     |     |  |
|-------------------------------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
| PO                            | PO-1 | PO-  | PO- | PO- | PO- | PO- |  |
| CO                            | -    | п   | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |
| CO1                           | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO2                           | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO3                           | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| CO4                           | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |
| Weig<br>hted<br>Aver<br>age   | 3    | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |

#### **III Semester courses**

### PLANT BIOTECHNOLOGY(HC): 22D301

#### **Course Outcome:**

1. The goal of this course is to introduce biotechnology methods in plants.

2. Handling of classical and modern plant biotechnology processes.

3. And understanding breeding of healthy plants for improved characteristics and plants for biomolecule production.

4. The application in pharmaceutical and food industry, in agriculture and in ecology.

| SEMESTER III                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |    |   |    |     |      |    |   |    |     |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|---|----|-----|------|----|---|----|-----|--|--|
| Course Name : PLANT BIOTECHNOLOGY(HC) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |    |   |    |     |      |    |   |    |     |  |  |
| PO                                    | PO-1     PO-     PO- |    |     |    |   |    |     |      |    |   |    |     |  |  |
| СО                                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II | 111 | IV | V | VI | VII | VIII | XI | X | XI | XII |  |  |
| CO1                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO2                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO3                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO4                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| Weig                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| hted                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |    |   |    |     |      |    |   |    |     |  |  |
| Aver                                  | r l l l l l l l l l l l l l l l l l l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |    |   |    |     |      |    |   |    |     |  |  |
| age                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |    |   |    |     |      |    |   |    |     |  |  |

## ANIMAL BIOTECHNOLOGY (HC): 22D302

### **Course Outcome:**

- 1. Culturing of animal cells and steps in production of transgenic animals
- 2. Techniques in animal cell culture
- 3. Cloning of animals
- 4. Approaches for tissue engineering

| SEMESTER III                           |             |     |     |     |      |     |     |      |     |      |     |     |  |
|----------------------------------------|-------------|-----|-----|-----|------|-----|-----|------|-----|------|-----|-----|--|
| Course Name : ANIMAL BIOTECHNOLOGY(HC) |             |     |     |     |      |     |     |      |     |      |     |     |  |
| РО                                     | <b>PO-1</b> | PO- | PO- | PO- | PO-V | PO- | PO- | PO-  | PO- | PO-X | PO- | PO- |  |
| СО                                     |             | п   | 111 | IV  |      | VI  | VII | VIII | XI  |      | XI  | XII |  |
| CO1                                    | 3           | 3   | 3   | 3   | 3    | 2   | 2   | 3    | 3   | 3    | 3   | 3   |  |
| CO2                                    | 3           | 3   | 3   | 3   | 3    | 2   | 2   | 3    | 3   | 3    | 3   | 3   |  |
| CO3                                    | 3           | 3   | 3   | 3   | 3    | 2   | 2   | 3    | 3   | 3    | 3   | 3   |  |
| CO4                                    | 3           | 3   | 3   | 3   | 3    | 2   | 2   | 3    | 3   | 3    | 3   | 3   |  |
| Weig                                   | 3           | 3   | 3   | 3   | 3    | 2   | 2   | 3    | 3   | 3    | 3   | 3   |  |
| hted                                   |             |     |     |     |      |     |     |      |     |      |     |     |  |
| Aver                                   |             |     |     |     |      |     |     |      |     |      |     |     |  |
| age                                    |             |     |     |     |      |     |     |      |     |      |     |     |  |

## IMMUNOLOGY (FCHC): 22D303

### **Course Outcome:**

- 1. Role of immune system in maintaining health
- 2. Cellular and molecular basis of immune responses
- 3. How immune responses are triggered and regulated
- 4. How the knowledge of immunology can be transferred into clinical decision-making through case studies presented in class.

| 2                               | SEMESTER III                                                                                                                                                                                                                                                                                                                  |   |     |    |   |    |     |      |    |   |    |     |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|---|----|-----|------|----|---|----|-----|--|--|
| Course Name : IMMUNOLOGY (FCHC) |                                                                                                                                                                                                                                                                                                                               |   |     |    |   |    |     |      |    |   |    |     |  |  |
| PO                              | 0 PO-1 PO-                                                                                                                                                                                                                                                                                |   |     |    |   |    |     |      |    |   |    |     |  |  |
| CO                              | -                                                                                                                                                                                                                                                                                                                             | п | 111 | IV | V | VI | VII | VIII | XI | X | XI | XII |  |  |
| CO1                             | 3                                                                                                                                                                                                                                                                                                                             | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO2                             | 3                                                                                                                                                                                                                                                                                                                             | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO3                             | 3                                                                                                                                                                                                                                                                                                                             | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO 4                            | 3                                                                                                                                                                                                                                                                                                                             | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| Weig<br>hted<br>Aver<br>age     | Weig 3 3 3 3 3 2 2 3 3 3 3   Weig 3 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 2 2 3 3 3 3   Meig 3 3 3 3 3 3 3 3 3   Meig 3 3 3 3 3 3 3 3   Meig 3 3 3 3 3 3 3 3   Meig 3 3 3 <t< th=""></t<> |   |     |    |   |    |     |      |    |   |    |     |  |  |

## PRACTICAL III: 22D304

## **Course Outcome:**

- 1. Hands on training in plant tissue culture
- 2. Performing the production of synthetic seeds.
- 3. Performing cell culture techniques.
- 4. Performing immunotechniques.

|                             | SEMESTER III                  |     |     |     |     |     |     |      |     |     |     |     |  |  |
|-----------------------------|-------------------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|
|                             | Course Name : PRACTICAL - III |     |     |     |     |     |     |      |     |     |     |     |  |  |
| PO                          | <b>PO-1</b>                   | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                          | -                             | п   | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |  |
| CO1                         | 3                             | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO2                         | 3                             | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO3                         | 3                             | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO4                         | 3                             | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age | 3                             | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |

## NATURAL PRODUCTS AND DRUG DISCOVERY (SC): 22D305

### **Course Outcome:**

- 1. The prospects of Natural products in 21st Century.
- 2. The use of different natural sources for discovery of drug.
- 3. To perform molecular modelling.
- 4. Regulatory guidelines for preclinical studies

| SEMESTER III                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |    |   |    |     |      |    |   |    |     |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|---|----|-----|------|----|---|----|-----|--|--|
| Course Name : NATURAL PRODUCTS AND DRUG DISCOVERY (SC) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |    |   |    |     |      |    |   |    |     |  |  |
| РО                                                     | PO     PO-     PO- |   |     |    |   |    |     |      |    |   |    |     |  |  |
| СО                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Π | 111 | IV | V | VI | VII | VIII | XI | X | XI | XII |  |  |
| CO1                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO2                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO3                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| CO4                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |
| Weighted<br>Average                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 3   | 3  | 3 | 2  | 2   | 3    | 3  | 3 | 3  | 3   |  |  |

## **BIOSTATISTICS AND BIOINFORMATICS (SC): 22D306**

### **Course Outcome:**

- 1. Knowledge of basic statistical methods to solve problems.
- 2. Students are taught to operate various statistical software packages.
- 3. The in-depth knowledge about the bioinformatics.
- 4. Understanding about the sequence analysis tools and also about the drug discovery.

| SEME                                                | SEMESTER III |     |     |     |     |     |     |      |     |     |     |     |  |  |  |
|-----------------------------------------------------|--------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|--|
| Course Name : BIOSTATISTICS AND BIOINFORMATICS (SC) |              |     |     |     |     |     |     |      |     |     |     |     |  |  |  |
| PO                                                  | PO-1         | PO-  | PO- | PO- | PO- | PO- |  |  |  |
| CO                                                  |              | II  | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |  |  |
| CO1                                                 | 3            | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |  |
| CO2                                                 | 3            | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |  |
| CO3                                                 | 3            | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |  |
| CO4                                                 | 3            | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |  |
| Weig<br>hted<br>Aver<br>age                         | 3            | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |  |

#### **IV Semester Courses**

## PROJECT WORK (HC): 22D401

### **Course Outcome:**

1. Focuses on skill development

2. Promotes research training in the field of biotechnology

3. To enable students to plan, design, execute, analyze,

4. Ability to solve industrial and research associated problems.

| SEMESTER IV                     |             |     |     |     |     |     |     |      |     |     |     |     |  |  |
|---------------------------------|-------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|
| Course Name : PROJECT WORK (HC) |             |     |     |     |     |     |     |      |     |     |     |     |  |  |
| PO                              | <b>PO-1</b> | PO-  | PO- | PO- | PO- | PO- |  |  |
| CO                              | -           | Π   | 111 | IV  | V   | VI  | VII | VIII | XI  | Х   | XI  | XII |  |  |
| CO1                             | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO2                             | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO3                             | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| CO4                             | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |
| Weig<br>hted<br>Aver<br>age     | 3           | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3   | 3   | 3   | 3   |  |  |

## MOLECULAR PLANT PATHOLOGY (SC): 22D402

## **Course Outcome:**

- 1. The concepts of plant pathology
- 2. The host pathogen interaction.
- 3. The genetics of plant diseases and resistance.
- 4. Application of molecular biology to conventional disease control strategies

| ř                                           | SEMESTER IV |     |     |     |     |     |     |      |     |     |     |     |  |  |  |
|---------------------------------------------|-------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|--|--|
| Course Name : MOLECULAR PLANT PATHOLOGY(SC) |             |     |     |     |     |     |     |      |     |     |     |     |  |  |  |
| PO                                          | PO-1        | PO-  | PO- | PO- | PO- | PO- |  |  |  |
| CO                                          | -           | II  | 111 | IV  | V   | VI  | VII | VIII | XI  | X   | XI  | XII |  |  |  |
| CO1                                         | 3           | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |  |
| CO2                                         | 3           | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |  |
| CO3                                         | 3           | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |  |
| CO 4                                        | 3           | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |  |
| Weig<br>hted<br>Aver<br>age                 | 3           | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2   | 3   | 2   | 3   |  |  |  |

## SBRR Mahajana First Grade College (Autonomous), PG Wing Pooja Bhagavat Memorial Mahajana Education Centre KRS Road, Metagalli, Mysuru-570016

## **Programme Outcomes–M.Sc.Computer Science**

**PO1**: Apply the theoretical knowledge of Mathematics to design and develop models to solve real-time problems.

**PO2**: Apply skills learnt in emerging technologies to construct and implement software systems of varying complexities.

**PO3:** Communicate and engage effectively with diverse systems, processes and people to construct computer based solutions to problems.

**PO4**: Recognize the need for and develop effective communication skills to engage in continuing professional development.

**PO5**: Demonstrate the understanding of the concepts learnt relating to professional, ethical, legal, and social issues and responsibilities in real-life.

**PO6:** Develop strong programming skills to implement research projects.

## SBRRMAHAJANA FIRSTGRADE COLLEGE (Autonomous) POSTGRADUATE WING (Accredited by NAAC with 'A' grade)

## Pooja Bhagavat Memorial Mahajana Education Centre. Affiliated to University of Mysore.

## Scheme and Syllabi for M.Sc.in Computer Science w.e.f. 2022-23

## I Semester

| Sl. No | Course Title                     | Туре    |        | Credits |   | Corse  |
|--------|----------------------------------|---------|--------|---------|---|--------|
|        |                                  |         | L      | Т       | Р | Code   |
| 1      | Discrete Mathematical Structures | HC      | 3      | 1       | 0 | 22J1H1 |
| 2      | Advanced Data Structures         | HC      | 3      | 1       | 0 | 22J1H2 |
| 3      | Database Technologies            | HC      | 3      | 0       | 1 | 22J1H3 |
|        | Soft Core Courses(Chooseat       | most2Co | urses) |         |   |        |
| 1      | Java Programming                 | SC      | 3      | 0       | 1 | 22J1S1 |
| 2      | Operating Systems                | SC      | 3      | 1       | 0 | 22J1S2 |
| 3      | Web Technologies                 | SC      | 2      | 1       | 1 | 22J1S3 |
| 4      | Computer Graphics                | SC      | 2      | 1       | 1 | 22J1S4 |
| 5      | Computer Architecture            | SC      | 4      | 0       | 0 | 22J1S5 |
| 6      | Numerical Algorithms             | SC      | 4      | 0       | 0 | 22J1S6 |

## IISemester

| Sl.No | Sl.No Course Title                |         |        | Corse |   |        |
|-------|-----------------------------------|---------|--------|-------|---|--------|
|       |                                   |         | L      | Т     | Р | Code   |
| 1     | Design And Analysis of Algorithms | HC      | 2      | 1     | 1 | 22J2H1 |
| 2     | Python Programming                |         | 3      | 0     | 1 | 22J2H2 |
| 3     | Data Communication & Networks     | HC      | 3      | 1     | 0 | 22J2H3 |
|       | Soft Core Courses(Chooseat        | most2Co | urses) |       |   |        |
| 1     | System Software                   | SC      | 3      | 0     | 1 | 22J2S1 |
| 2     | Communication Skills              |         | 4      | 0     | 0 | 22J2S2 |
| 3     | Professional Ethics and Values    | SC      | 3      | 1     | 0 | 22J2S3 |
| 4     | Pattern Recognition               |         | 3      | 1     | 0 | 22J2S4 |

| 5 | Big Data Analytics |    | 3 | 0 | 1 | 22J2S5 |
|---|--------------------|----|---|---|---|--------|
|   | World Wide Web     | OE | 3 | 1 | 0 | 22J2E1 |

## **III Semester**

| Sl.No | Course Title               |         |        | Credits |   | Corse  |  |
|-------|----------------------------|---------|--------|---------|---|--------|--|
|       |                            |         | L      | Т       | Р | Code   |  |
| 1     | Theory of Languages        | HC      | 3      | 1       | 0 | 22J3H1 |  |
| 2     | Machine Learning           | HC      | 3      | 0       | 1 | 22J3H2 |  |
| 3     | Minor Project              | HC      | 0      | 1       | 3 | 22J3H3 |  |
|       | Soft Core Courses(Chooseat | most2Co | urses) | ·       |   |        |  |
| 1     | Artificial Intelligence    | SC      | 3      | 1       | 0 | 22J3S1 |  |
| 2     | Digital Image Processing   | SC      | 3      | 0       | 1 | 22J3S2 |  |
| 3     | C# Programming             | SC      | 3      | 0       | 1 | 22J3S3 |  |
| 4     | Android Programming        |         | 3      | 0       | 1 | 22J3S4 |  |
| 5     | Software Engineering       | SC      | 3      | 1       | 0 | 22J3S5 |  |
|       | E-Commerce                 | OE      | 3      | 1       | 0 | 22J3E1 |  |

# **IV Semester**

| Sl.No                                   | No Course Title                     |    | Credits |   |    | Corse  |  |
|-----------------------------------------|-------------------------------------|----|---------|---|----|--------|--|
|                                         |                                     |    | L       | Т | Р  | Code   |  |
| 1                                       | Dissertation                        | HC | 0       | 2 | 10 | 22J4H1 |  |
| Soft Core Courses(Chooseatmost2Courses) |                                     |    |         |   |    |        |  |
| 1                                       | Compiler Construction               | SC | 3       | 1 | 0  | 22J4S1 |  |
| 2                                       | Advanced Database Management System | SC | 2       | 1 | 1  | 22J4S2 |  |
| 3                                       | Data Mining                         | SC | 3       | 0 | 1  | 22J4S3 |  |
|                                         | Office Automation                   | OE | 3       | 1 | 0  | 22J4E1 |  |

## DISCRETE MATHEMATICAL STRUCTURES

**Outcomes:** 

- Apply the concepts of set theory, logic, quantifiers and relations in specifying and solving problems.
- Identify the quantifiers and their uses and Make use of fundamentals of logic theory.
- Apply the mathematical induction principle and different methods to solve the given problem.
- Make use of basic concepts of graph theory to solve the given problem.

| Course A | rticulati | ion M | latrix |
|----------|-----------|-------|--------|
|          |           |       |        |

| РО                  | PO1 | POT | PO 3 | PO4 | PO5 | PO6  |
|---------------------|-----|-----|------|-----|-----|------|
| CO                  | 101 | 102 | 105  | 104 | 105 | 100  |
| CO1                 | 3   | 1   | 2    | 1   | 1   | 1    |
| CO2                 | 3   | 1   | 2    | 1   | 1   | 1    |
| CO3                 | 3   | 2   | 2    | 1   | 1   | 2    |
| CO4                 | 3   | 2   | 2    | 1   | 1   | 1    |
| Weighted<br>Average | 3   | 1.5 | 2    | 1   | 1   | 1.25 |

## 1: Low,2: Moderate,3: High

PO

CO

**CO1** 

**CO2** 

CO3

**CO4** 

## ADVANCED DATA STRUCTURES

[3:1:0]

**PO 6** 

1

1

2

1

2

1

1

## **Outcomes:**

HC

- Understand the ADT specification of dictionary data structure, priority queue and binary search trees.
- Perform insertion, deletion and searching operation on dictionary, priority queue and binary search trees.
- Perform the sorting using external sorting.

1

3

2

• Identify the applications of string matching algorithms and tries.

2

2

2

|      | Course ar | inculation n | 141114. |      |   |
|------|-----------|--------------|---------|------|---|
| PO 1 | PO 2      | PO 3         | PO 4    | PO 5 |   |
|      |           |              |         |      |   |
| 3    | 1         | 2            | 1       | 1    |   |
|      |           |              |         |      | Γ |

2

2

1

1

1

1

# **Course articulation matrix:**

## HC

[3:1:0]

| Weighted |      |      |      |   |      |      |
|----------|------|------|------|---|------|------|
| Average  | 2.25 | 1.75 | 1.75 | 1 | 1.25 | 1.25 |

## 1: Low,2: Moderate,3: High

# HC DATABASE TECHNOLOGIES [3:0:1]

## **Outcomes:**

- Comprehend data models and schemas in DBMS.
- Use SQL-the standard language of relational databases.
- Understand the functional dependencies and design of the database.
- Understand the concept of Transaction and Query processing.

| Course articulation matrix: |      |      |      |      |      |      |  |  |
|-----------------------------|------|------|------|------|------|------|--|--|
| РО                          | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |  |  |
| СО                          |      |      |      |      |      |      |  |  |
| CO1                         | 1    | 2    | 2    | 1    | 1    | 1    |  |  |
| CO2                         | 2    | 3    | 3    | 1    | 2    | 2    |  |  |
| CO3                         | 1    | 2    | 1    | 1    | 1    | 1    |  |  |
| CO4                         | 1    | 2    | 1    | 1    | 1    | -    |  |  |
| Weighted<br>Average         | 1.25 | 2.25 | 1.75 | 1    | 1.25 | 1    |  |  |

## 1: Low,2: Moderate,3: High

## SC

## JAVA PROGRAMMING

[3:0:1]

## **Outcomes:**

- Understand different aspects of object oriented paradigm and programming fundamentals.
- Build programs using programming basics, class fundamentals and reusable code using inheritance and polymorphism.
- Model solutions using files and interfaces.
- Develop efficient and error free applications using packages and exceptions.

| РО  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |  |  |
|-----|------|------|------|------|------|------|--|--|
| СО  |      |      |      |      |      |      |  |  |
| CO1 | 1    | 3    | 2    | 1    | 2    | 3    |  |  |
| CO2 | 1    | 3    | 2    | 1    | 2    | 3    |  |  |
| CO3                 | 1 | 3 | 3   | 1 | 2 | 3 |
|---------------------|---|---|-----|---|---|---|
| CO4                 | 1 | 3 | 3   | 1 | 2 | 3 |
| Weighted<br>Average | 1 | 3 | 2.5 | 1 | 2 | 3 |

### **OPERATING SYSTEMS**

[3:1:0]

### **Outcomes:**

SC

- Able to comprehend the operating system components and its services
- Able to understand how process is created and various process related components of the operating system.
- Able to comprehend how memory management and virtual memory management is done.
- Able to understand different file and directory structures and how files are stored in secondary storage.

| РО                  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |
|---------------------|------|------|------|------|------|------|
| СО                  |      |      |      |      |      |      |
| CO1                 | 1    | 3    | 1    | 1    | 1    | 1    |
| CO2                 | 1    | 3    | 1    | 1    | 1    | 1    |
| CO3                 | 1    | 3    | 1    | 1    | 1    | 1    |
| CO4                 | 1    | 3    | 1    | 1    | 1    | 1    |
| Weighted<br>Average | 1    | 3    | 1    | 1    | 1    | 1    |

### **Course articulation matrix:**

1: Low,2: Moderate,3: High

### **WEB TECHNOLOGIES**

[2:1:1]

### **Outcomes:**

SC

- Develop an ability to implement HTML5 pages using fundamental tags.
- Develop style sheet using CSS for a given problem.
- Illustrate Java Script to validate a form with event handler for a given problem.
- Determine PHP in the back-end for database connectivity, web frame works and content management systems.

|                     | Course articulation matrix: |      |      |      |      |      |  |  |
|---------------------|-----------------------------|------|------|------|------|------|--|--|
| РО                  | PO 1                        | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |  |  |
| CO                  |                             |      |      |      |      |      |  |  |
| C01                 | -                           | 3    | -    | 1    | 1    | 1    |  |  |
| CO2                 | -                           | 3    | -    | 1    | 1    | 1    |  |  |
| CO3                 | 1                           | 3    | 2    | 1    | 1    | 1    |  |  |
| CO4                 | 1                           | 3    | 2    | 1    | 1    | 1    |  |  |
| Weighted<br>Average | 1                           | 3    | 2    | 1    | 1    | 1    |  |  |

#### COMPUTERGRAPHICS

**Outcomes:** 

SC

- Able to identify and use various graphics hardware, basic coordinate representations, functions and scan conversion algorithms.
- Able to implement various filled area primitives, 2D transformations and viewing
- Able to implement 2D clipping algorithms 3D geometric transformations.
- Able to implement 3D viewing, spline curves and visible surface detection

#### **Course articulation matrix:** PO **PO 1 PO 2 PO 3 PO 4 PO 5 PO 6** CO **CO1** 3 3 1 1 1 1 **CO2** 3 3 1 1 1 1 3 1 **CO3** 3 1 1 1 **CO4** 1 3 3 1 1 1 Weighted 3 3 1 1 1 1 Average

1: Low,2: Moderate,3: High

SC

### COMPUTERARCHITECTURE

[4:0:0]

[2:1:1]

**Outcomes:** 

- Develop an ability to understand the concept of cache mapping techniques.
- Develop an ability to understand basics of organizational and architectural issues of a

digital computer.

- Acquire knowledge and understanding the theory of Digital Design and Computer Organization to provide an insight to basic computer components.
- Develop an ability to conceptualize instruction level parallelism.

| Course at recutation matrix. |      |      |      |      |      |      |  |
|------------------------------|------|------|------|------|------|------|--|
| РО                           | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |  |
| СО                           |      |      |      |      |      |      |  |
| CO1                          | 1    | 1    | 1    | 1    | 1    | 1    |  |
| CO2                          | 1    | 1    | 1    | 1    | -    | -    |  |
| CO3                          | 1    | 1    | 1    | 1    | -    | -    |  |
| CO4                          | 1    | 1    | 1    | 1    | -    | -    |  |
| Weighted<br>Average          | 1    | 1    | 1    | 1    | 1    | 1    |  |

**Course articulation matrix:** 

1: Low,2: Moderate,3: High

### SC

#### NUMERICAL ALGORITHMS

[4:0:0]

### **Outcomes:**

- Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions.
- Apply numerical methods to obtain approximate solutions to mathematical problems.
- Derive numerical methods for various mathematical operations and tasks such as solution of non-linear equations, numerical integration and ordinary differential equations.
- Gain an understanding of interpolation and statistical methods.

| Course | antiquilation | matuin    |
|--------|---------------|-----------|
| Course | articulation  | I Matrix: |

|                     |      | Course ai | ciculation i |      |      |      |
|---------------------|------|-----------|--------------|------|------|------|
| РО                  | PO 1 | PO 2      | PO 3         | PO 4 | PO 5 | PO 6 |
| CO                  |      |           |              |      |      |      |
| CO1                 | 3    | 1         | -            | -    | 1    | -    |
| CO2                 | 3    | -         | 1            | -    | -    | -    |
| CO3                 | 3    | -         | -            | -    | -    | -    |
| CO4                 | 3    | -         | -            | 1    | -    | 1    |
| Weighted<br>Average | 3    | 1         | 1            | 1    | 1    | 1    |

1:Low,2: Moderate,3: High

### DESIGN AND ANALYSIS OF ALGORITHMS

### **Outcomes:**

- Compare between different data structures. Pick an appropriate data structure for a designsituation. AnalyzePerformance of algorithms using asymptotic analysis.
- Describe the divide-and-conquer paradigm and explain when an algorithmic design situationcalls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-conqueralgorithms. Derive and solve recurrences describing the performance of divide-and-conqueralgorithms.
- Describe the greedy paradigm and dynamic-programming paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize greedy algorithms, and analyze them.
- Describe the backtracking paradigm and branch and bound paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm.

| РО                  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |
|---------------------|------|------|------|------|------|------|
| СО                  |      |      |      |      |      |      |
| CO1                 | 3    | -    | 1    | -    | 1    | -    |
| CO2                 | 3    | 1    | -    | 1    | 2    | -    |
| CO3                 | 3    | -    | -    | -    | 2    | 1    |
| CO4                 | 3    | -    | -    | -    | 2    | -    |
| Weighted<br>Average | 3    | 1    | 1    | 1    | 1.75 | 1    |

#### **Course articulation matrix:**

1: Low,2: Moderate,3: High

### HC

#### **PYTHON PROGRAMMING**

[3:0:1]

### **Outcomes:**

- Demonstrate the use of the built-in objects of Python
- Demonstrate significant experience with the Python program development environment.
- Understand and implement the basic methods of python modules likeNumPy,and Pandas.
- Visualize data using Matplotlib module.

**Course articulation matrix:** 

| РО  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |
|-----|------|------|------|------|------|------|
| CO  |      |      |      |      |      |      |
| C01 | 3    | 2    | 1    | 1    | 2    | 3    |

#### HC

[2:1:1]

| CO2                 | 3 | 3   | 1 | 1 | 3    | 3   |
|---------------------|---|-----|---|---|------|-----|
| CO3                 | - | 3   | 1 | 1 | 2    | 1   |
| CO4                 | 2 | 2   | 1 | 1 | 2    | 3   |
| Weighted<br>Average | 2 | 2.5 | 1 | 1 | 2.25 | 2.5 |

### DATA COMMUNICATION & NETWORKS [3:1:0]

### **Outcomes:**

HC

- Understand and implement various types of transmissions in wired and wireless communications
- Study and develop the aspects of communication channels of Data Link Layer.
- Understand Design& apply various routing protocols of the Networks Layer.
- Design applications using the protocols of Transport & application Layer.

| РО                  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |
|---------------------|------|------|------|------|------|------|
| СО                  |      |      |      |      |      |      |
| CO1                 | 1    | 3    | 3    | -    | 2    | 2    |
| CO2                 | 1    | -    | 3    | 2    | -    | -    |
| CO3                 | 1    | 3    | 3    | 3    | -    | -    |
| CO4                 | 1    | 2    | 3    | 2    | 3    | 3    |
| Weighted<br>Average | 1    | 2.66 | 3    | 2.33 | 2.5  | 2.5  |

### **Course articulation matrix:**

1: Low,2: Moderate,3: High

### SYSTEM SOFTWARE

[3:0:1]

### **Outcomes:**

SC

- Develop an Ability to master the design of assembler.
- Able to understand various issues related to processing macros.
- Able to understand different loaders schemes, and related issues.
- Develop ability to write simple lexical analyser and parser with Lex and Yacc.

| РО                  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 |
|---------------------|------|------|------|------|------|------|
| СО                  |      |      |      |      |      |      |
| C01                 | 1    | 2    | 2    | 1    | 1    | 3    |
| CO2                 | 1    | 2    | 2    | 1    | 1    | 3    |
| CO3                 | 1    | 3    | 2    | 1    | 1    | 3    |
| CO4                 | 3    | 3    | 2    | 1    | 1    | 3    |
| Weighted<br>Average | 1.5  | 2.5  | 2    | 1    | 1    | 3    |

#### **COMMUNICATION SKILLS**

[4:0:0]

#### **Outcomes:**

SC

- Understand and apply knowledge of human communication and language processes as they occur across various contexts from multiple perspectives.
- Understand and evaluate key theoretical approaches used in the interdisciplinary field of communication.
- Find, use, and evaluate primary academic writing associated with the communication discipline.
- Communicate effectively orally and in writing.

|                     |      | Course al | incutation n | iau ix. |      |      |
|---------------------|------|-----------|--------------|---------|------|------|
| РО                  | PO 1 | PO 2      | PO 3         | PO 4    | PO 5 | PO 6 |
| CO                  |      |           |              |         |      |      |
| CO1                 | -    | -         | 2            | 3       | 1    | -    |
| CO2                 | 1    | -         | 3            | -       | 2    | 2    |
| CO3                 | -    | 3         | 3            | 3       | -    | -    |
| CO4                 | 1    | 2         | 3            | 3       | 2    | 3    |
| Weighted<br>Average | 1    | 2.5       | 2.75         | 3       | 1.66 | 2.5  |

### **Course articulation matrix:**

1: Low,2: Moderate,3: High

### SC

#### PROFESSIONAL ETHICS AND HUMAN VALUES

[3:1:0]

#### **Outcomes:**

- Implement the aspects of Human Values.
- Interpret the ethics of engineering and its associated responsibilities.

- Employ the code of ethics in their profession.
- Display the awareness of Global issues in Ethics.

| РО                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|---------------------|-----|-----|-----|-----|-----|-----|
| СО                  |     |     |     |     |     |     |
| CO1                 | 1   | -   | 1   | 2   | 3   | 1   |
| CO2                 | 1   | 1   | 1   | 2   | 3   | 1   |
| CO3                 | 1   | 1   | 1   | 2   | 3   | 1   |
| CO4                 | 1   | 1   | 1   | 2   | 3   | 1   |
| Weighted<br>Average | 1   | 1   | 1   | 2   | 3   | 1   |

#### **Course articulation matrix:**

### 1: Low,2: Moderate,3: High

### SC

### PATTERNRECOGNITION

### [3:1:0]

### **Outcomes:**

- Acquire the knowledge on basics of pattern recognition systems
- Demonstrate the techniques of estimations and component analysis.
- Implement different supervised learning techniques.
- Implement different unsupervised learning techniques.

### **Course Articulation Matrix**

| РО                  | DO1 | PO1 | DO3 | PO4 | PO5 | PO( |
|---------------------|-----|-----|-----|-----|-----|-----|
| CO                  | rui | F02 | 103 | FU4 | 103 | 100 |
| CO1                 | 3   | -   | -   | -   | 1   | -   |
| CO2                 | 3   | -   | -   | -   | 3   | 1   |
| CO3                 | 3   | 1   | -   | -   | 3   | -   |
| CO4                 | 3   | -   | 1   | 1   | 3   | -   |
| Weighted<br>Average | 3   | 1   | 1   | 1   | 2.5 | 1   |

1: Low,2: Moderate,3: High

### **BIG DATA ANALYTICS**

### **Outcomes:**

- Apply the Data Analytics Life Cycle to real life cases.
- Process Data with Hadoop.
- Apply the necessary techniques for data analytics.
- Demonstrate Data Analysis using R.

| РО                  | PO1 | POI | DU3 | PO4 | PO5 | POG |
|---------------------|-----|-----|-----|-----|-----|-----|
| СО                  | 101 | 102 | 105 | 104 | 103 | 100 |
| CO1                 | -   | 3   | 1   | _   | 1   | 1   |
| CO2                 | -   | 3   | 1   | -   | 1   | 1   |
| CO3                 | 1   | 3   | 1   | -   | 1   | 1   |
| CO4                 | 1   | 3   | 1   | 1   | 1   | 1   |
| Weighted<br>Average | 1   | 3   | 1   | 1   | 1   | 1   |

### **Course Articulation Matrix**

### 1: Low,2: Moderate,3: High

OE

### WORLD WIDE WEB

[3:1:0]

### **Outcomes:**

- Understand the working scheme of the Internet and World Wide Web.
- Evaluate the various protocols of the Internet.
- Comprehend and demonstrate the application of Hypertext Mark-up Language(HTML).
- Apply the various security tools and understand the need of security measures.

| course in the anticipation is a well as | Course | Articul | lation | Matrix |
|-----------------------------------------|--------|---------|--------|--------|
|-----------------------------------------|--------|---------|--------|--------|

| РО  | DO1 | BOJ | DO2 | DO4 | <b>BO</b> 5 | BOG |
|-----|-----|-----|-----|-----|-------------|-----|
| СО  | POI | PO2 | P03 | PO4 | P05         | PO0 |
| CO1 | 1   | 1   | 1   | -   | -           | 1   |
| CO2 | 1   | 1   | 1   | -   | -           | -   |
| CO3 | 1   | 1   | 2   | 1   | 1           | -   |

### SC

[3:0:1]

| CO4                 | 1 | 2    | 2   | 1 | 1 | - |
|---------------------|---|------|-----|---|---|---|
| Weighted<br>Average | 1 | 1.25 | 1.5 | 1 | 1 | 1 |

### HC

#### THEORY OF LANGUAGES

[3:1:0]

### **Outcomes:**

- Acquire a fundamental understanding of the core concepts in automata theory and formal languages
- Develop ability to model grammars and automata (recognizers)for different language classes.
- Develop an ability to identify formal language classes and prove language membership properties.
- Develop an ability to prove and disprove theorems establishing key properties of formal languages and automata.

| РО                  | PO1  | PO2 | PO3 | PO4 | PO5 | POG |
|---------------------|------|-----|-----|-----|-----|-----|
| СО                  | 101  | 102 | 105 | 104 | 105 | 100 |
| CO1                 | 3    | 1   | 1   | -   | -   | 1   |
| CO2                 | 3    | 1   | 1   | 1   | -   | 1   |
| CO3                 | 2    | 1   | 1   | 1   | 1   | 1   |
| CO4                 | 3    | 1   | 1   | -   | 1   | 1   |
| Weighted<br>Average | 2.75 | 1   | 1   | 1   | 1   | 1   |

#### **Course Articulation Matrix**

1: Low,2: Moderate,3: High

### HC

### MACHIN ELEARNING

[3:0:1]

### **Outcomes:**

- Identify the need for Machine Learning using Python, appropriate data frames and its operations.
- Ability to build and validate linear regression models
- Ability understand different classification techniques and build classification models
- Ability to use unsupervised learning techniques to cluster data and Apply Scikit library for Machine Learning.

|                     |     | <b>Course Ar</b> | ticulation M | latrix |     |     |
|---------------------|-----|------------------|--------------|--------|-----|-----|
| РО                  | DO1 | POY              | PO3          | PO4    | PO5 | POG |
| СО                  | 101 | 102              | 105          | 104    | 103 | 100 |
| CO1                 | 1   | 3                | 1            | -      | 1   | 1   |
| CO2                 | 3   | 3                | 1            | -      | 1   | 1   |
| CO3                 | 3   | 3                | 1            | 1      | 1   | 1   |
| CO4                 | 3   | 3                | 1            | 1      | 1   | 1   |
| Weighted<br>Average | 2.5 | 3                | 1            | 1      | 1   | 1   |

### HC

### **MINOR PROJECT**

0:1:3

### **Outcomes:**

- Understanding the emerging trends of new technologies by conducting a survey of several available literatures in the preferred field of study.
- Develop real time Projects by comparing the several existing solutions for a research challenge.
- Demonstrate an ability to work in teams and manage the process of building the project within the stipulated time.
- Report and present the findings of the research study/project conducted in the preferred domain.

| РО                  | DO1 | PO1 | DO3 | PO4 | DO5 | POG |
|---------------------|-----|-----|-----|-----|-----|-----|
| CO                  | FUI | F02 | 103 | 104 | 103 | 100 |
| CO1                 | 1   | 3   | -   | _   | _   | -   |
| CO2                 | 1   | 3   | -   | -   | _   | 3   |
| CO3                 | -   | -   | 3   | 3   | _   | 3   |
| CO4                 | -   | -   | -   | 3   | 2   | 3   |
| Weighted<br>Average | 1   | 3   | 3   | 3   | 2   | 3   |

**Course Articulation Matrix** 

1: Low,2: Moderate,3: High

#### ARTIFICIAL INTELLIGENCE

[3:1:0]

### **Outcomes:**

- Understand the basic concepts of AI.
- Understand the fundamentals of knowledge representation, inference and theorem proving.
- Represent knowledge of the world using logic and infer new facts from that knowledge.
- Explain how Artificial Intelligence enables capabilities that are beyond conventional technology.

| РО                  | PO1 | POI | PO3  | PO4 | PO5  | POG |
|---------------------|-----|-----|------|-----|------|-----|
| СО                  | FUI | F02 | 103  | 104 | 103  | FU0 |
| CO1                 | 3   | 3   | 2    | 2   | 2    | 3   |
| CO2                 | 3   | 3   | 3    | 2   | 1    | 3   |
| CO3                 | 3   | 3   | 3    | 2   | 1    | 3   |
| CO4                 | 3   | 3   | 3    | 2   | 1    | 3   |
| Weighted<br>Average | 3   | 3   | 2.75 | 2   | 1.25 | 3   |

| Course | Articul | lation   | Matrix |
|--------|---------|----------|--------|
| Course | Arucu   | เล่นเป็น | Matrix |

1: Low,2: Moderate,3: High

### SC

### DIGITAL IMAGE PROCESSING

[3:0:1]

### **Outcomes:**

- Demonstrate the concepts of digital image processing.
- Learn different techniques employed for the enhancement of images using spatial domain.
- Learn different techniques employed for the enhancement of images using frequency domain.
- Implement the techniques of image segmentation.

| Course | Articu | lation | Matrix |
|--------|--------|--------|--------|
|--------|--------|--------|--------|

| РО  | DO1 | DOJ | DO3 | DO4 | DO5 | DO( |
|-----|-----|-----|-----|-----|-----|-----|
| СО  | POI | PO2 | PUS | PU4 | P05 | PU0 |
| CO1 | 3   | -   | 1   | _   | 2   | -   |
| CO2 | 3   | -   | -   | 1   | 3   | -   |
| CO3 | 3   | 1   | -   | 1   | 3   | 1   |

#### SC

| CO4                 | 3 | 1 | - | - | 3   | - |
|---------------------|---|---|---|---|-----|---|
| Weighted<br>Average | 3 | 1 | 1 | 1 | 3.5 | 1 |

### **C# PROGRAMMING**

[3:0:1]

#### **Outcomes:**

SC

- Acquire the knowledge of.NET framework.
- Develop an ability to write programs in C#.
- Implement the extended OOP's concept in C# environment.
- Develop applications using standard C# libraries.

#### **Course Articulation Matrix**

| РО                  | PO1 | POT  | PO3 | PO4 | PO5 | POG |
|---------------------|-----|------|-----|-----|-----|-----|
| CO                  | 101 |      | 105 | 104 | 105 | 100 |
| CO1                 | -   | 3    | 1   | -   | -   | 2   |
| CO2                 | -   | 2    | 1   | 1   | -   | 1   |
| CO3                 | 1   | 3    | 2   | -   | 1   | 1   |
| CO4                 | 1   | 3    | 2   | -   | -   | 2   |
| Weighted<br>Average | 1   | 2.75 | 1.5 | 1   | 1   | 1.5 |

1: Low,2: Moderate,3: High

### SC

### ANDROID PROGRAMMING

[3:0:1]

### **Outcomes:**

- Build sample android application.
- Develop user interfaces for android applications.
- Develop android applications to share data between different applications.
- Deploy android applications.

| РО | PO1 | PO1 | PO3 | PO4 | PO5 | POG |
|----|-----|-----|-----|-----|-----|-----|
| CO | 101 | 102 | 105 | 104 | 103 | 100 |

|                     |      |   | 1    |   |     |      |
|---------------------|------|---|------|---|-----|------|
| CO1                 | 2    | 3 | 2    | _ | 1   | 1    |
| CO2                 | 3    | 3 | 2    | - | 1   | 2    |
| CO3                 | 3    | 3 | 2    | 1 | 2   | 2    |
| CO4                 | 3    | 3 | 3    | 1 | 2   | 2    |
| Weighted<br>Average | 2.75 | 3 | 2.25 | 1 | 1.5 | 1.75 |

SC

#### SOFTWARE ENGINEERING

[3:1:0]

### **Outcomes:**

- Identify the key activities in managing software project and compare different process models.
- Able to develop software using contemporary agile approaches
- Gain the ability to work as an individual and as part of a multidisciplinary team to develop and deliver quality software.
- Compare and contrast the various testing and maintenance approaches.

| РО                  | PO1 | POI  | PO3  | PO4  | PO5 | PO6 |
|---------------------|-----|------|------|------|-----|-----|
| CO                  |     | F02  |      | 104  | 103 |     |
| CO1                 | 1   | 3    | 1    | 1    | 1   | 1   |
| CO2                 | 1   | 3    | 2    | 2    | 1   | 1   |
| CO3                 | 1   | 2    | 2    | 2    | 1   | -   |
| CO4                 | 1   | 1    | 2    | -    | 1   | 1   |
| Weighted<br>Average | 1   | 2.25 | 1.75 | 1.25 | 1   | 1   |

#### **Course Articulation Matrix**

### 1: Low,2: Moderate,3: High

### OE

#### **E-COMMERCE**

[3:1:0]

### **Outcomes:**

- Study the impact of E-commerce on business models and strategy
- Describe Internet trading relationships including Business to Consumer, Business-to-Business, Intra-organizational structures.

- Assess electronic payment systems and its securities.
- Recognize and discuss global E-commerce issues.

| РО                  | PO1 | PO2  | PO3  | PO4  | PO5 | PO 6 |  |  |
|---------------------|-----|------|------|------|-----|------|--|--|
| CO                  |     |      |      |      |     |      |  |  |
| C01                 | -   | 1    | 2    | 2    | 2   | -    |  |  |
| CO2                 | -   | 2    | 3    | 2    | 2   | -    |  |  |
| CO3                 | 1   | 2    | 2    | 1    | 1   | 1    |  |  |
| CO4                 | 1   | -    | 2    | 2    | 1   | -    |  |  |
| Weighted<br>Average | 1   | 1.25 | 2.25 | 1.75 | 1.5 | 1    |  |  |

#### **Course Articulation Matrix**

### 1: Low,2: Moderate,3: High

### HC

#### DISSERTATION

[0:2:10]

### **Outcomes:**

- Develop basic algorithm steps as a solution to a real-life problem.
- Implement algorithms using latest tools that contribute to the software solution of the project using different tools.
- Analyse, interpret, test and validate experimental results.
- Develop research/technical report with enhanced writing/communication skills following ethical practices.

| РО                  | PO1 | PO1 | PO3  | POA | PO5  | POG |
|---------------------|-----|-----|------|-----|------|-----|
| СО                  | 101 | 102 | 105  | 104 | 105  | 100 |
| C01                 | 3   | 3   | 2    | -   | -    | -   |
| CO2                 | -   | -   | 3    | -   | 3    | -   |
| CO3                 | 1   | 3   | -    | -   | 2    | -   |
| CO4                 | -   | -   | 3    | 3   | 3    | 3   |
| Weighted<br>Average | 2   | 3   | 2.66 | 3   | 2.66 | 3   |

#### **Course Articulation Matrix**

1: Low,2: Moderate,3: High

### **COMPILER CONSTRUCTION**

### **Outcomes:**

- Explain the concepts and different phases of compilation and Interpret language tokens using regular expressions and design lexical analyzer.
- Build top down parsing, bottom up parsing and parse tree representation of the input.
- Perform context sensitive analysis, semantic analysis and type checking
- Experiment the optimization techniques to intermediate code and generate machine code for high level language program.

| РО                  | PO1 | PO7 | PO3 | PO4 | PO5 | POG |
|---------------------|-----|-----|-----|-----|-----|-----|
| СО                  | 101 | 102 | 105 | 104 | 105 | 100 |
| C01                 | 2   | 3   | -   | _   | 1   | 1   |
| CO2                 | 3   | 3   | -   | 1   | 1   | 1   |
| CO3                 | 3   | 3   | 1   | _   | -   | 1   |
| CO4                 | 2   | 3   | 1   | -   | -   | 1   |
| Weighted<br>Average | 2.5 | 3   | 1   | 1   | 1   | 1   |

#### **Course Articulation Matrix**

1: Low,2: Moderate,3: High

#### SC

### ADVANCEDDATABASE MANAGEMENTSYSTEM [2:1:1]

#### **Outcomes:**

- Critically assess new developments in database technology.
- Evaluate the contribution of database theory to practical implementations of database management systems.
- Implement the various types of database systems.
- Interpret the impact of emerging database standards.

| Course Ar incutation Matrix |     |     |     |     |     |     |  |  |
|-----------------------------|-----|-----|-----|-----|-----|-----|--|--|
| РО                          | DO1 | POI | DU3 | DO1 | PO5 | POG |  |  |
| CO                          | rUI | 102 | 105 | 104 | 105 | 100 |  |  |
| C01                         | 3   | 2   | 1   | -   | 1   | 1   |  |  |
| CO2                         | 3   | 3   | 2   | -   | 2   | 2   |  |  |

### **Course Articulation Matrix**

SC

| CO3                 | 3 | 3    | 3 | 1 | 2    | 3 |
|---------------------|---|------|---|---|------|---|
| CO4                 | 3 | 3    | 2 | - | 2    | 2 |
| Weighted<br>Average | 3 | 2.75 | 2 | 1 | 1.75 | 2 |

SC

### DATA MINING

[3:0:1]

### **Outcomes:**

- Identify data mining problems and recognize types of data and preprocessing needed.
- Employ the concepts of Association Analysis
- Identify problems suitable for Classifications and Apply different classification algorithms
- Identify problems appropriate for Clustering and Apply different clustering algorithms.

| РО                  | PO1 | POI | DO3 | PO4 | PO5 | POG |
|---------------------|-----|-----|-----|-----|-----|-----|
| СО                  | 101 | 102 | 105 | 104 | 103 | 100 |
| C01                 | 3   | 3   | 1   | 1   | 2   | 1   |
| CO2                 | 3   | 3   | 1   | 1   | 2   | 1   |
| CO3                 | 3   | 3   | 1   | 1   | 2   | 1   |
| CO4                 | 3   | 3   | 1   | 1   | 2   | 1   |
| Weighted<br>Average | 3   | 3   | 1   | 1   | 2   | 1   |

#### **Course Articulation Matrix**

1: Low,2: Moderate,3: High

### OE

### **OFFICE AUTOMATION**

[3:1:0]

### **Outcomes:**

- To understand the basics of computer hardware and software.
- To prepare documents of different types.
- Ability to develop and use spreadsheets for tabulating and analyzing for productivity.
- To prepare presentations.

|                     | 1    | Course Ar | ticulation M | latrix | 1   | 1   |
|---------------------|------|-----------|--------------|--------|-----|-----|
| РО                  | DO 1 | PO1       | DO3          |        | PO5 | DOC |
| СО                  | 101  | 102       | 105          | 104    | 103 | 100 |
| CO1                 | 2    | 2         | 1            | 1      | 1   | 1   |
| CO2                 | 2    | 2         | 1            | 1      | 1   | 1   |
| CO3                 | 2    | 2         | 1            | 1      | 1   | 1   |
| CO4                 | 2    | 2         | 1            | 1      | 1   | 1   |
| Weighted<br>Average | 2    | 2         | 1            | 1      | 1   | 1   |

### **DEPARTMENT OF CHEMISTRY**

#### **Programme Outcomes, Course outcomes with Articulation Matrix tables**

#### **Programme Outcomes:**

- Students will have a strong foundation in the fundamentals and applications of current theoretical and practical chemistry in Analytical, Inorganic, Organic and Physical Chemistry.
- 2. Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- 3. Students will be able to design and carry out scientific experiments and accurately record and analyze the results of the experiments.
- Students will be able to explore new areas of research in both chemistry and allied fields such as Biochemistry, Material Chemistry, Pharmaceutical chemistry and Chemical biology and related technology.
- 5. Students will understand the central role of chemistry to our society which includes understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- 6. Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to Environmental pollution.
- 7. Apply knowledge to build up small scale industry for developing endogenous product
- Apply various aspects of chemistry in natural products isolations, pharmaceuticals, dyes, textiles, polymers, petroleum products, forensic etc. and also to develop interdisciplinary approach of the subject.
- The course curriculum incorporates basics and advanced training in order to make a student capable of expressing the subject through technical writing as well as through oral presentation.
- 10. Provide an opportunity to act as team player by contributing in laboratory, field-based situation and industry.
- 11. Use modern techniques, decent equipment's and Chemistry software's.
- 12. A post-graduation in Chemistry provides the opportunities in educational sector, pharmaceutical companies and chemical industries.

#### **I** Semester courses

### **CHI HCT: 1.1.**

### **Concepts and Models of Inorganic Chemistry + Inorganic Chemistry Practicals-I**

#### **Course outcomes**

- 1. Compared the trends in the properties of all group elements with respect to periodicity.
- 2. Examined and applied the structural arrangement in metals, ionic, covalent compounds and inorganic solids.
- 3. Understand and differentiate the different theories of inorganic chemistry.
- 4. Demonstrated the principles of gravimetric and spectrophotometric determinations.

| POs<br>COs | PO1 | PO2 | PO3 | PO4  | PO5  | PO6  | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|------|------|------|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3    | 3    | 3    | 3   | 2   | 3   | 2    | 3    | 3    |
| CO2        | 3   | 3   | 3   | 3    | 3    | 3    | 3   | 2   | 3   | 2    | 2    | 3    |
| CO3        | 3   | 3   | 3   | 3    | 2    | 2    | 2   | 2   | 3   | 2    | 2    | 2    |
| CO4        | 3   | 3   | 3   | 2    | 3    | 3    | 2   | 2   | 3   | 3    | 3    | 3    |
| W.A        | 3   | 3   | 3   | 2.75 | 2.75 | 2.75 | 2.5 | 2   | 3   | 2.25 | 2.5  | 2.75 |

#### **Course Articulation Matrix**

### СНО НСТ: 1.2.

#### **Reaction Mechanism + Organic Chemistry Practicals-I**

### **Course outcomes**

- 1. Recalled the fundamental principles of organic reactions.
- 2. Students able to understand the concepts related to substitution and addition reactions.
- 3. Students able to understand the concepts related to binary mixture separation
- 4. Recalled the importance of synthetic organic chemistry and the applications in chemical industries.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 2    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3        | 3   | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3    | 2    | 3    |

| CO4 | 3 | 3 | 3 | 3 | 3    | 3       | 3      | 3 | 3 | 3 | 2    | 3 |
|-----|---|---|---|---|------|---------|--------|---|---|---|------|---|
| W.A | 3 | 3 | 3 | 3 | 2.75 | 3       | 2.75   | 3 | 3 | 3 | 2.25 | 3 |
|     |   |   |   |   |      | OTTO TT | OT 1 1 | • |   |   |      |   |

### **CHP HCT: 1.3**.

### Physical Chemistry-I + Physical Chemistry Practicals-I

#### **Course outcomes**

- 1. Apply the principles of thermodynamics and kinetics to advanced concepts.
- 2. Students able to understand the concepts related to fugacity and fast reactions.
- 3. Demonstrated the principles of conductometric titrations.
- 4. Demonstrated the principles of kinetics and potentiometric titrations.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3   | 3    | 2   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 2    | 2   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO3        | 3   | 3   | 3   | 3   | 2    | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO4        | 3   | 3   | 3   | 3   | 2    | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| W.A        | 3   | 3   | 3   | 3   | 2.25 | 2   | 3   | 3   | 3   | 2.5  | 2.5  | 3    |

#### **Course Articulation Matrix**

### **CHG HCT: 1.4.**

#### Symmetry, Group Theory and Chemical Spectroscopy

#### **Course outcomes**

- 1. Understand and differentiate the different type's symmetry elements.
- 2. Students advanced their skills in 3dimensinal analysis of molecular structures.
- 3. Formulate and discussed the different spectroscopic techniques.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7  | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|------|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3   | 2   | 2   | 3    | 2   | 3   | 2    | 3    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 2   | 2   | 2    | 2   | 3   | 2    | 3    | 3    |
| CO3        | 3   | 3   | 3   | 3   | 2   | 2   | 2    | 2   | 3   | 3    | 3    | 3    |
| W.A        | 3   | 3   | 3   | 3   | 2   | 2   | 2.33 | 2   | 3   | 2.33 | 3    | 3    |

### **Course Articulation Matrix**

### CHA SCT: 1.51.

### Fundamentals of Chemical Analysis + Analytical Chemistry Practicals-I

#### **Course outcomes**

- 1. Students able to understand the Language of analytical chemistry and data analysis
- 2. Students able to understand principles involved in different types of titrations.
- 3. Demonstrated the principles of pHmetric determinations.
- 4. Demonstrated the principles of water analysis.

| POs<br>COs | PO1 | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 3   | 3   | 2    | 3    | 3    |
| CO2        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 3   | 3   | 2    | 3    | 3    |
| CO3        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 3   | 3   | 2    | 3    | 3    |
| CO4        | 3   | 3   | 3   | 2    | 3   | 3   | 2   | 3   | 3   | 2    | 3    | 3    |
| W.A        | 3   | 3   | 3   | 2.75 | 3   | 3   | 2   | 3   | 3   | 2    | 3    | 3    |

### **II** Semester courses

### CHI HCT: 2.1.

### **Concepts and Models of Inorganic Chemistry + Inorganic Chemistry Practical-II**

#### **Course outcomes**

- 1. Students able to understand the preparation of coordination compounds and crystal field theory.
- 2. Students able to understand the electronic spectra, magnetic properties and electron transfer processes.
- 3. Demonstrated the principles of analysis of low melting alloys.
- 4. Demonstrated the principles of semi micro qualitative analysis of inorganic mixtures.

### **Course Articulation Matrix**

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8  | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|------------|------|-----|------|------|------|
| CO1        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 3    | 3   | 3    | 2    | 3    |
| CO2        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 3    | 3   | 3    | 3    | 3    |
| CO3        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 2    | 3   | 3    | 3    | 3    |
| CO4        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 3    | 3   | 3    | 2    | 3    |
| W.A        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 2.75 | 3   | 3    | 2.5  | 3    |

### СНО НСТ: 2.2.

### Stereochemistry and Heterocyclic Chemistry + Organic Chemistry practical - II

### **Course outcomes**

- 1. Students able to understand the stereochemistry of the organic compounds.
- 2. Students able to understand the nomenclature and reactions of heterocyclic compounds.
- 3. Demonstrated the principles of preparation associated with organic compounds preparation.
- 4. Demonstrated the principles of molecular rearrangements.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|
| CO1        | 3   | 2   | 2   | 3   | 3   | 2   | 3          | 3   | 3   | 3    | 2    | 3    |
| CO2        | 3   | 2   | 2   | 3   | 3   | 2   | 2          | 3   | 3   | 2    | 3    | 2    |
| CO3        | 3   | 2   | 3   | 3   | 3   | 2   | 3          | 3   | 3   | 3    | 3    | 3    |
| CO4        | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 2   | 3   | 2    | 2    | 2    |

| W.A | 3 | 2 | 2.5 | 3 | 3 | 2 | 2.5 | 2.75 | 3 | 2.5 | 2.5 | 2.5 |
|-----|---|---|-----|---|---|---|-----|------|---|-----|-----|-----|
|-----|---|---|-----|---|---|---|-----|------|---|-----|-----|-----|

#### **CHP HCT: 2.3.**

#### Physical Chemistry-I + Physical Chemistry practical – II

#### **Course outcomes**

- 1. Students able to understand the electrochemistry of solutions and electrode process.
- 2. Students able to understand the basic concepts of quantum chemistry.
- 3. Demonstrated the principles of kinetics and potentiometric titrations.
- 4. Demonstrated the principles of electroanalytical titrations.

| POs<br>COs | PO1 | PO2 | PO3  | PO4  | PO5 | PO6 | <b>PO7</b> | PO8  | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|------|------|-----|-----|------------|------|-----|------|------|------|
| CO1        | 3   | 2   | 3    | 3    | 3   | 2   | 3          | 3    | 3   | 3    | 3    | 3    |
| CO2        | 3   | 2   | 2    | 2    | 3   | 2   | 2          | 2    | 3   | 2    | 2    | 2    |
| CO3        | 3   | 2   | 3    | 3    | 3   | 2   | 3          | 3    | 3   | 3    | 3    | 3    |
| CO4        | 3   | 2   | 3    | 3    | 3   | 2   | 3          | 3    | 3   | 3    | 3    | 3    |
| W.A        | 3   | 2   | 2.75 | 2.75 | 3   | 2   | 2.75       | 2.75 | 3   | 2.75 | 2.75 | 2.75 |

#### **Course Articulation Matrix**

#### CHG HCT: 2.4.

#### Molecular Spectroscopy-II

#### **Course outcomes**

- 1. Students able to understand the NMR spectroscopy.
- 2. Students able to understand the ESR & NQR spectroscopy.
- 3. Students able to understand the Mass and IR spectroscopy.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|
| C01        | 3   | 2   | 3   | 3   | 3   | 2   | 3          | 3   | 3   | 3    | 3    | 3    |

| CO2 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
| W.A | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |

### CHA SCT: 2.51.

### Separation Techniques + Analytical Chemistry practical – II

#### **Course outcomes**

- 1. Students able to understand the Fundamentals of chromatography.
- 2. Students able to understand the applied chromatography and separation techniques.
- 3. Demonstrated the principles of precipitation titrations.
- 4. Demonstrated the principles of chromatographic techniques.

| Course | Articu | lation | Μ | atrix |  |
|--------|--------|--------|---|-------|--|
|--------|--------|--------|---|-------|--|

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 2    | 3    |
| CO2        | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3        | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 2    | 3    |
| CO4        | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 2    | 3    |
| W.A        | 3   | 2   | 3   | 3   | 3   | 2   | 3   | 3   | 3   | 3    | 2.25 | 3    |

#### **III** Semester courses

### CHI HCT: 3.1.Advanced inorganic chemistry

#### **Course outcomes**

- 1. Fundamental concepts of organometallic chemistry and synthesis, structure and bonding in different organometallics and their applications.
- 2. Homogeneous and heterogeneous catalysts and their applications in the synthesis of organic compounds in industries.
- 3. Chemistry of main group elements, metal clusters, silicates and silicones and their applications in day to day life.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 2   | 3   | 2    | 3    | 2    |
| CO2        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 2   | 3   | 2    | 2    | 2    |
| CO3        | 3   | 3   | 2   | 3   | 2    | 3   | 3   | 2   | 3   | 2    | 2    | 2    |
| W.A        | 3   | 3   | 2   | 3   | 2.66 | 3   | 3   | 2   | 3   | 2    | 2.33 | 2    |

#### **Course Articulation Matrix**

### CHO HCT: 3.2. Reagents in Organic Synthesis

#### **Course outcomes**

- 1. Students are familiar about chemistry of oxidants, reductants and their applications in the organic synthesis.
- 2. Understand the various catalysts in organic synthesis by known naming reactions.
- 3. Study Retro-synthesis and molecular rearrangement.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 3   | 3   | 3    | 2    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 3   | 3   | 3    | 3    | 2    |
| CO3        | 3   | 3   | 2   | 3   | 2    | 3   | 3   | 3   | 3   | 3    | 2    | 2    |
| W.A        | 3   | 3   | 2   | 3   | 2.66 | 3   | 3   | 3   | 3   | 3    | 2.33 | 2.33 |

### CHP HCT: 3.3. Physical Chemistry-III

#### **Course outcomes**

- 1. Understand the principles of photochemistry, its experimental techniques and applications.
- 2. Fundamentals of radiation chemistry, experimental methods of detection of radiation and applications of radioisotopes.
- 3. General aspects of nuclear chemistry, different types of nuclear reactions.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3    | 2   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 2    | 2   | 3   | 3   | 3   | 2    | 2    | 2    |
| CO3        | 3   | 3   | 2   | 3   | 2    | 2   | 3   | 3   | 3   | 3    | 3    | 3    |
| W.A        | 3   | 3   | 2   | 3   | 2.33 | 2   | 3   | 3   | 3   | 2.33 | 2.33 | 2.66 |

#### **Course Articulation Matrix**

### CHI SCT: 3.42.

#### Frontiers in Inorganic Chemistry + Inorganic Chemistry Practicals-II

#### **Course outcomes**

- 1. Gain knowledge on design and synthesis of new inorganic materials.
- 2. Fabrication and characterization of nanomaterials.
- 3. Determination of various analytes presents in different ore samples by volumetric, gravimetric methods.
- 4. Determination of various analytes presents in different ore samples by spectrophotometric methods.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3   | 2   | 2   | 3   | 3   | 3   | 2    | 3    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 2   | 2   | 2   | 3   | 3   | 2    | 3    | 3    |

| CO3 | 3 | 3 | 3 | 3    | 2 | 2    | 2    | 3 | 3 | 3    | 3 | 3 |
|-----|---|---|---|------|---|------|------|---|---|------|---|---|
| CO4 | 3 | 3 | 3 | 2    | 2 | 3    | 2    | 3 | 3 | 2    | 3 | 3 |
| W.A | 3 | 3 | 3 | 2.75 | 2 | 2.25 | 2.25 | 3 | 3 | 2.25 | 3 | 3 |

### CHO SCT: 3.43.

### Carbohydrates, Proteins and Nucleic Acids + Organic Chemistry Practicals-III

#### **Course outcomes**

- 1. Synthesis, industrial and biological importance of carbohydrates.
- 2. General synthesis of amino acids, peptides, nucleic acids and their biological significance.
- 3. The isolation of caffeine, carotene, lycopene, cincole, azelaic acid and piperine from respective natural sources. Estimation of ketones, sugars, nitro and amino groups in natural products.
- 4. 4. Interpret UV, IR, NMR and MS data of different organic compounds.

| POs<br>COs | PO1 | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 2   | 3   | 2    | 2    | 3    |
| CO2        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 2   | 3   | 2    | 2    | 3    |
| CO3        | 3   | 3   | 3   | 3    | 3   | 3   | 2   | 2   | 3   | 2    | 3    | 3    |
| CO4        | 3   | 3   | 3   | 2    | 3   | 3   | 2   | 2   | 3   | 2    | 3    | 3    |
| W.A        | 3   | 3   | 3   | 2.75 | 3   | 3   | 2   | 2   | 3   | 2    | 2.5  | 3    |

#### **IV** Semester courses

### CHI HCT: 4.1. Bioinorganic Chemistry Course outcomes

### **Course outcomes**

- 1. Structural building blocks of proteins, nucleic acids and their metal ion interactions.
- 2. Biochemical reactions of several metallo- enzymes and oxygen transport proteins.
- 3. Medicinal applications of metals and metal complexes, and also treatment of toxicity due to heavy metal ions

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 3   | 3   | 2    | 3    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO3        | 3   | 3   | 2   | 3   | 2    | 3   | 3   | 3   | 3   | 2    | 2    | 3    |
| W.A        | 3   | 3   | 2   | 3   | 2.66 | 3   | 3   | 3   | 3   | 2    | 2.33 | 3    |

| Course | Articulation | Matrix  |
|--------|--------------|---------|
| Course | mulation     | TTALLIA |

### CHO HCT: 4.2. Photochemistry, Pericyclic Reactions and Organometallic Chemistry

#### **Course outcomes**

- 1. Basic concepts of photochemistry and pericyclic reactions and their usefulness in the synthesis of many organic compounds.
- 2. Synthesis of organic compounds using different organometallic compounds as catalysts.
- 3. Asymmetric synthesis of organic compounds using chiral compounds.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 2    |
| CO3        | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 2    |
| W.A        | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 2.33 |

#### CHP HCT: 4.3. Physical Chemistry-IV

#### **Course outcomes**

- 1. Applications of reaction kinetics help in correlating the rates of biological and chemical reactions.
- 2. Theory and applications statistical thermodynamics.
- 3. Fundamentals of X-ray crystallography and structural interpretation by various X-ray diffraction techniques

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|
| C01        | 3   | 3   | 2   | 3   | 3    | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 2    | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO3        | 3   | 3   | 2   | 3   | 2    | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| W.A        | 3   | 3   | 2   | 3   | 2.33 | 3   | 3   | 3   | 3   | 3    | 3    | 3    |

#### **Course Articulation Matrix**

### CHP SCT: 3.44.

### Applications of Electrochemistry and Corrosion + Physical Chemistry Practical – III Course outcomes

- 1. Basic concepts of electrochemical methods
- 2. Theory and applications of Corrosion and Corrosion inhibitors.
- 3. Students can able to develop experimental skill and interpretation of plausible mechanisms of reactions.
- 4. This helps in academics, research and Industries

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 3   | 3   | 2   | 2   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 2   | 2   | 2   | 3   | 3   | 2    | 2    | 3    |
| CO3        | 3   | 3   | 3   | 3   | 2   | 2   | 2   | 3   | 3   | 2    | 2    | 3    |

**Course Articulation Matrix** 

| CO4 | 3 | 3 | 3 | 3 | 2 | 3    | 2    | 3 | 3 | 2 | 2 | 3 |
|-----|---|---|---|---|---|------|------|---|---|---|---|---|
| W.A | 3 | 3 | 3 | 3 | 2 | 2.25 | 2.25 | 3 | 3 | 2 | 2 | 3 |

### CHP.HC. 4.4: PROJECT WORK

#### **Course outcomes:**

- 1. Enhanced Practical skills.
- 2. Identify the research problem and design the new research work.
- 3. Exposure to industrial environment and enriching the knowledge in industrial assessment.

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3   | 3    | 3    | 3    |
| CO2        | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3   | 3    | 3    | 2    |
| CO3        | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3   | 3    | 3    | 2    |
| W.A        | 3   | 3   | 2   | 3   | 2   | 3   | 3   | 3   | 3   | 3    | 3    | 2.33 |

**Course Articulation Matrix** 

# DEPARTMENT OF MICROBIOLOGY M.Sc. in Microbiology

### Course outcomes and course Articulation Matrix with tables

### **Programme Outcomes:**

- Students will have a strong foundation in the fundamentals and applications of current theoretical and practical Microbiology in Microbial culture, Identification, Biochemical analysis and Biological activities from microbial metabolites
- 2. Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- 3. Students will be able to design and carry out scientific experiments and accurately record and analyze the results of the experiments.
- 4. Students will be able to explore new areas of research in both microbiology and other fundamental life science fields such as Biochemistry and Biotechnology.
- 5. Students will understand the central role of microbiology to our society which includes understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- 6. Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to health and environmental concern.
- 7. Apply knowledge to build up small scale industry for developing endogenous product
- 8. Apply various aspects of microbiology in natural products isolations, pharmaceuticals, dyes, textiles, polymers, petroleum products, forensic etc. and also to develop interdisciplinary approach of the subject.
- The course curriculum incorporates basics and advanced training in order to make a student capable of expressing the subject through technical writing as well as through oral presentation.
- 10. Provide an opportunity to act as team player by contributing in laboratory, field-based situation and industry.
- 11. Use modern techniques, decent equipment's and analytical software's.
- 12. A post-graduation in Microbiology provides the opportunities in educational sector, pharmaceutical companies and chemical industries.

#### I Semester courses

### HC: 22E101

#### Bacteriology

#### **Course outcomes**

- 1. The structure of bacteria and its identification
- 2. The different agents to inhibit bacteria
- 3. The concept and working principles of microscopes
- 4. Classification and salient features of different groups of bacteria

### **Course Articulation Matrix**

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 2  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 2          | 3  | 3  | 2    | 3    | 3    |

### HC: 22E102

#### Virology

### **Course outcomes**

- 1. Structure and functioning of viruses
- 2. Infectious cycle and replication pattern
- 3. Viruses as tool for vaccination
- 4. Host and virus specific responses

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### HC: 22E103

### **Techniques in Biology**

#### **Course outcomes**

- 1. This paper is designed to give a brief introduction to most of the techniques used in the field of biological analyses
- 2. Nevertheless the topics in this paper are to be taught compendiously.
- 3. Techniques in Biology
- 4. The fundamental principles in cell homogenization

| CO/PO      |            |    |    |             |    |    |            |    |    |      |      |      |
|------------|------------|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO         | <b>PO1</b> | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|            |            | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1        | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2        | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3        | 3          | 3  | 3  | 3           | 2  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| <b>CO4</b> | 3          | 3  | 3  | 3           | 2  | 3  | 3          | 3  | 2  | 3    | 3    | 3    |

#### **Course Articulation Matrix**

### HC: 22E104

### **Molecular Cell Biology**

### **Course outcomes**

- 1. The Cellular organization.
- 2. Study of phytochemicals in cancer biology.
- 3. Signaling transduction in cells.
- 4. Structure and function of cell.

| CO/PO |     |    |    |      |    |    |            |    |    |      |      |      |
|-------|-----|----|----|------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3    | 2  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3    | 3    | 3    |

### SC: 22E107

#### **Environmental Microbiology**

#### **Course outcomes**

- 1. The evolution of life, microorganisms and soil interaction
- 2. Adaptation of microorganisms
- 3. The ecological succession of microorganisms and its adaptation
- 4. Bioremediation concept of microorganisms

| CO/PO |            |    |    |             |    |    |            |    |    |             |      |             |
|-------|------------|----|----|-------------|----|----|------------|----|----|-------------|------|-------------|
| CO    | <b>PO1</b> | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | <b>PO12</b> |
|       |            | 2  | 3  |             | 5  | 6  |            | 8  | 9  |             |      |             |
| CO1   | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3           |
| CO2   | 3          | 3  | 3  | 3           | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3           |
| CO3   | 3          | 3  | 2  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3           |
| CO4   | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 2  | 3           | 3    | 3           |

### **Course Articulation Matrix**

### PRACTICAL IA: 22E105

### Techniques in Biology & Bacteriology & Virology

### **Course outcome**

- 1. Structure and functioning of viruses
- 2. Infectious cycle and replication pattern
- 3. The fundamental principles in cell homogenization
- 4. The concept and working principles of microscopes

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 2           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

#### PRACTICAL IB: 22E106

### Molecular Cell Biology & Environmental Microbiology

#### **Course outcomes**

- 1. Phytochemical role in cellular process and cancer biology
- 2. Importance of growth factors and cellular signalling.
- 3. Importance of bioanalytical techniques
- 4. Techniques in Biology

### **Course Articulation Matrix**

| CO/PO |            |    |    |             |    |    |            |    |    |             |      |      |
|-------|------------|----|----|-------------|----|----|------------|----|----|-------------|------|------|
| CO    | <b>PO1</b> | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|       |            | 2  | 3  |             | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1   | 3          | 3  | 2  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO2   | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO3   | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO4   | 3          | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |

### **II** Semester courses

### FCHC: 22E201

### MOLECULARBIOLOGY

### **Course outcomes**

- 1. To understand biological activities and metabolism at DNA and protein level
- 2. The course gives an in-depth insight into the molecular aspects of life the central dogma.
- 3. It explains molecular aspects of genes and its regulation- genome- gene expressions heredity- recombination- protein synthesis- molecular basis of diseases-mutations genetic analysis etc.
- 4. The student will get an idea about the principles behind molecular biology

| CO/PO      |     |    |    |             |    |    |            |    |    |      |      |      |
|------------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| СО         | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|            |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1        | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2        | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| <b>CO3</b> | 3   | 3  | 2  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

| CO4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
|-----|---|---|---|---|---|---|---|---|---|---|---|---|

#### FCHC: 22E202

#### **GENETIC ENGINEERING**

#### **Course outcomes**

- 1. The basics of Genetic engineering.
- 2. Basic principles of gene cloning and gene products.
- 3. Applied aspects of Genetic engineering
- 4. Importance of Recombinant DNA Technology

### **Course Articulation Matrix**

| CO/PO |     |    |    |             |    |    |            |    |    |             |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|-------------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO3   | 3   | 2  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |

#### **SOFTCORE: 22E205**

#### MICROBIAL PHYSIOLOGY

#### **Course outcomes**

- 1. This course deals with characteristics, properties and biological significance of the biomolecules of life.
- 2. In depth knowledge of the energetic and regulation of different metabolic processes In microorganisms.
- 3. The student develops understanding of the laws of thermodynamics, concepts of entropy, enthalpy and free energy changes and their application to biological systems and various biochemical studies and reactions.
- 4. Conceptual knowledge of aerobic and anaerobic respiration and various intermediary mechanisms involved, oxidative phosphorylation.

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 2  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 2  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
### FCSC: 22E206 MOLECULAR DIAGNOSTICS (FCSC)

### **Course outcomes**

- 1. The course focuses on learning and understanding how the various molecular techniques that were studied can be developed and utilized indiagnosis.
- 2. The course explains common analytical techniques and molecular techniques related to the development and use of diagnostics.
- 3. Students learn about the clinical applications of molecular diagnostic in patients with infectious disease.
- 4. The student will get an idea about the concept of molecular diagnosis and underpinning the successful application of gene therapy or biologic response modifiers as well they can find their future focus in biotechnology companies developing and marketing Diagnostic kits.

### **Course Articulation Matrix**

| CO/PO |     |    |    |      |    |    |            |    |    |      |      |      |
|-------|-----|----|----|------|----|----|------------|----|----|------|------|------|
| СО    | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### SC: 22E303

### Genetics

### **Course Outcome**

- 1. The basics of genetic transmission
- 2. Study on microbial genetic factors and mutation.
- 3. Study on genetic basis of sex determination and transposable elements
- 4. Mendel's Experiments and extra nuclear inheritance

| CO/PO |     |    |    |             |    |    |            |    |    |             |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|-------------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |

| CO2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

### PRACTICALS IIA: 22E203

### Molecular Biology & Genetic Engineering

#### **Course outcomes**

- 1. Makes students to understand the basic molecular tools and its application in basic research and applied research in various fields of lifesciences.
- 2. The fundamental cloning vectors.
- 3. Preparation of probes and its application in scientific fields
- 4. The course gives an in-depth insight into the molecular aspects of life the central dogma

| CO/PO      |     |    |    |             |    |    |            |    |    |      |      |      |
|------------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO         | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|            |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1        | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2        | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3        | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| <b>CO4</b> | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### **Course Articulation Matrix**

### **PRACTICALS IIB: 22E204**

### **Microbial Physiology**

### **Course Outcome**

- 1. Overview of major biomolecules: Classification, structure, function of carbohydrates, lipids, proteins, aminoacids, nucleic acids.
- 2. Discuss the biosynthesis and the degradation pathways involved in the physiology of microbes.
- 3. Conceptual knowledge of properties, structure, function of enzymes, enzyme kinetics and their regulation, enzyme engineering, Application of enzymes in large scale
- 4. This course deals with characteristics, properties and biological significance of the biomolecules of life.

| CO/PO      |     |    |    |      |    |    |            |    |    |             |      |      |
|------------|-----|----|----|------|----|----|------------|----|----|-------------|------|------|
| CO         | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|            |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1        | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO2        | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| <b>CO3</b> | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO4        | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |

#### **III Semester courses**

#### HC: 22E301

#### MEDICAL MICROBIOLOGY

#### **Course outcomes**

- 1. Basis of microbial infection
- 2. Mode of action of drugs on microbes
- 3. Diagnosis of microbial infectious diseases
- 4. Transducing signals in host

### **Course Articulation Matrix**

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### FCHC: 22E302

#### IMMUNOLOGY

#### **Course outcomes**

- 1. Role of immune system in maintaining health
- 2. Cellular and molecular basis of immune responses
- 3. How immune responses are triggered and regulated
- 4. Organs, tissues, cells and molecules of the immune system

| CO/PO |     |    |    |      |    |    |            |    |    |             |      |      |
|-------|-----|----|----|------|----|----|------------|----|----|-------------|------|------|
| СО    | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|       |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3           | 3    | 3    |

### FCHC: 22E03

### FOOD MICROBIOLOGY

### **Course outcomes**

- 1. Basis of food borne microbes
- 2. Nutritive value of foods/neutraceuticals
- 3. Food bore pathogen detection
- 4. Expertise in detecting food poisoning

### **Course Articulation Matrix**

| CO/PO |     |    |    |      |    |    |            |    |    |      |      |      |
|-------|-----|----|----|------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3    | 2  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3    | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### SC: 22E306

#### MYCOLOGY

#### **Course outcomes**

- 1. Basis of fungal taxonomy
- 2. Fungal characteristics' and its economic importance
- 3. Expertise in detecting fungal identification
- 4. Interaction of fungus with different commodity

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| CO    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 2           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### SC: 22E307 Agricultural Microbiology

### **Course outcomes**

- 1. This paper of microbiology and biochemistry of soil is designed with the objective to provide general introduction of soil and in depth information on soil microbial diversity and the role of microorganisms in biogeochemical cycling of elements like C,N,P and trace elements and soil fertility.
- 2. The importance of physical, chemical and biological properties of soil.
- 3. Role of microorganisms in biogeochemical cycling.
- 4. Microbiology and physiology of degradation of native and organic matter and Nitrogen fixation.

### **Course Articulation Matrix**

| CO/PO |     |    |    |             |    |    |            |    |    |      |      |      |
|-------|-----|----|----|-------------|----|----|------------|----|----|------|------|------|
| СО    | PO1 | PO | PO | <b>PO 4</b> | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  |             | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3           | 2  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3           | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### SC: 22E308

### **GENOMICS ANDPROTEOMICS**

#### **Course outcomes**

- 1. The concepts of genome, genome sequencing and genome mapping
- 2. The knowledge about structural and functional proteomics
- 3. Next generation sequencing, Human Genome Project.

| CO/PO |     |    |    |      |    |    |            |    |    |             |      |      |
|-------|-----|----|----|------|----|----|------------|----|----|-------------|------|------|
| CO    | PO1 | PO | PO | PO 4 | PO | PO | <b>PO7</b> | PO | PO | <b>PO10</b> | PO11 | PO12 |
|       |     | 2  | 3  |      | 5  | 6  |            | 8  | 9  |             |      |      |
| CO1   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3    | 3  | 2  | 3          | 3  | 3  | 3           | 3    | 3    |

### PRACTICALS IIIA: 22E304

#### Immunology & Medical Microbiology & Food Microbiology

#### **Course outcomes**

- 1. The immunological methods used to detect the disease
- 2. How the knowledge of immunology can be transferred into clinical decision-making through case studies presented in class
- 3. Interaction of microbes with different food commodity
- 4. The role of molecular markers in comparative genomics

### **Course Articulation Matrix**

| CO/PO |     |    |    |    |    |    |            |    |    |      |      |      |
|-------|-----|----|----|----|----|----|------------|----|----|------|------|------|
| СО    | PO1 | PO | PO | PO | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  | 4  | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

### PRACTICALS IIIB: 22E305

#### **Course outcomes**

- 1. The fundamental of recombination and mapping
- 2. Importance of chromosomal sex determination and transposition mechanism
- 3. Importance of fungi as protein supplements
- 4. Genetic and physical maps, markets for genetic mapping

| CO/PO |     |      |      |      |      |      |     |      |      |      |      |      |
|-------|-----|------|------|------|------|------|-----|------|------|------|------|------|
| CO    | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO7 | PO 8 | PO 9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |
| CO2   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |
| CO3   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |
| CO4   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |

#### **IV Semester courses**

### HC: 22E401

#### **Research Project Work**

- 1. Students will able to choose an appropriate topic for study and will able to clearly formulate and state research problems
- 2. Students will be able to complete the relevant literature and frame hypothesis for research
- 3. Students will able to plan research design
- 4. Student will able o compile relevant data, interpret and analyze it and test the hypothesis where ever applicable
- 5. Students will able to defend his /her work in front of a panel of examiners

| CO/PO |     |    |    |    |    |    |            |    |    |      |      |      |
|-------|-----|----|----|----|----|----|------------|----|----|------|------|------|
| СО    | PO1 | PO | PO | PO | PO | PO | <b>PO7</b> | PO | PO | PO10 | PO11 | PO12 |
|       |     | 2  | 3  | 4  | 5  | 6  |            | 8  | 9  |      |      |      |
| CO1   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO2   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO3   | 3   | 3  | 2  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |
| CO4   | 3   | 3  | 3  | 3  | 3  | 3  | 3          | 3  | 3  | 3    | 3    | 3    |

#### **Course Articulation Matrix**

#### HC: 22E402

#### **Industrial Microbiology**

#### **Course outcomes**

- 1. Industrial microbiology & fermentation contains improved biochemical or physiological fermentation are mainly carried out by fungi and bacteria on large scale to produce commercial products.
- 2. The main objective of industrial fermentation is to produce highest quality and quantity of particles produce by combining.
- 3. Microbes involved in fermentation.
- 4. The basics of fermentation technology

| CO/PO |     |      |      |      |      |      |     |      |      |      |      |      |
|-------|-----|------|------|------|------|------|-----|------|------|------|------|------|
| СО    | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO7 | PO 8 | PO 9 | PO10 | PO11 | PO12 |
| CO1   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |
| CO2   | 3   | 3    | 3    | 2    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |
| CO3   | 3   | 3    | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    | 3    |

| CO4         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 | 3 | 3 | 3 | 3 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|

# DEPARTMENT OF SOCIAL WORK <u>Course outcomes and course Articulation Matrix with</u> <u>tables</u>

# **PROGRAMME OUTCOME**

- The Social Work trainees shall apply the foundation knowledge, skills, values and ethics of social work practice in the assessment and treatment of individuals, families, groups, organizations, and communities and be able to make a career in social work practice.
- Demonstrate an understanding and appreciation for human diversity, to engage in non-discriminatory culturally sensitive practice that seeks social and economic justice for clients, provide service to those who are in need of it.
- 3. Recognize him/her self as a Professional Social Worker.
- 4. Facilitate inter-disciplinary collaboration for better understanding of human problems, services and issues related to human development.
- 5. Develop a professional identity as a social worker by applying professional values and ethics to social work practice.
- 6. Link theory with practice in every sphere of human service interventions.
- 7. To develop requisite knowledge, skills and values in working with people.
- 8. Establish an interaction between social scientists, activists, policy makers and planners
- 9. Promotes among learners a sense of responsibility and commitment to work with different sections of people and especially of the vulnerable sections of the society
- 10. Promotes opportunities and to create awareness for personal growth.
- 11. Develops creative thinking and ability to apply theoretical knowledge in practice of social work
- 12. Ability to identify ways that they can maximize the strengths of the client context to design and promote effective programs for clients

## Honor's level odd semester (I Semester)

# SOCIAL WORK - HISTORY AND IDEOLOGIES

### **Course Outcomes (COs):**

**CO 1:** To understand history and evolution of social Work profession, both in India and the West.

**CO2:** To develop insights into the origin and Development of Ideologies and Approaches to social Chang

CO 3: To develop Skills to understand contemporary reality in its historical context.

|                                                                      | Course Articulation Matrix - Social Work - History and Ideologies HC |             |      |             |             |             |            |             |             |      |      |      |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------|------|-------------|-------------|-------------|------------|-------------|-------------|------|------|------|--|--|
| Course Articulation Matrix - Social Work – History and Ideologies HC |                                                                      |             |      |             |             |             |            |             |             |      |      |      |  |  |
| CO/PO                                                                | PO1                                                                  | <b>PO 2</b> | PO 3 | <b>PO 4</b> | <b>PO 5</b> | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10 | PO11 | PO12 |  |  |
| CO1                                                                  | 3                                                                    | 3           | 3    | 3           | 3           | 3           | 3          | 3           | 3           | 3    | 3    | 3    |  |  |
| CO2                                                                  | 3                                                                    | 3           | 2    | 3           | 3           | 3           | 2          | 3           | 3           | 3    | 3    | 2    |  |  |
| CO3                                                                  | 2                                                                    | 3           | 3    | 3           | 3           | 3           | 3          | 3           | 3           | 2    | 3    | 3    |  |  |
| Weighted                                                             |                                                                      |             |      |             |             |             |            |             |             |      |      |      |  |  |
| Average                                                              | 2.7                                                                  | 3           | 2.7  | 3           | 3           | 3           | 2.7        | 3           | 3           | 2.7  | 3    | 2.7  |  |  |

# SOCIETY AND DYNAMICS OF HUMAN BEHAVIOUR

### Course Outcomes (COs)

**CO 1:** Acquaint themselves with the basic concepts of Sociology like society, community, association, culture, social change, social stratification etc.

CO 2: Know the basic social institutions like family, marriage, kinship in a scientific way

**CO 3:** Explain social change and the factors affecting social change. Realize the importance of cultural lag to understand social change

**CO 4:** To understand psychological concepts and its relevance to Social Work

| Course Ar | ticulati | ion Ma | trix - C | Course | name: | Society | and D      | ynami | cs of H | uman B | ehavior | (HC) |
|-----------|----------|--------|----------|--------|-------|---------|------------|-------|---------|--------|---------|------|
| CO/PO     | PO1      | PO     | PO       | PO     | PO    | PO      | <b>PO7</b> | PO    | PO      | PO10   | PO11    | PO12 |
|           |          | 2      | 3        | 4      | 5     | 6       |            | 8     | 9       |        |         |      |
| CO1       | 3        | 3      | 3        | 3      | 3     | 3       | 3          | 3     | 3       | 3      | 3       | 3    |
| CO2       | 3        | 3      | 3        | 2      | 3     | 3       | 3          | 3     | 3       | 3      | 3       | 2    |
| CO3       | 2        | 3      | 3        | 3      | 3     | 2       | 3          | 2     | 3       | 3      | 3       | 3    |
| CO4       | 3        | 3      | 3        | 3      | 3     | 3       | 3          | 3     | 3       | 3      | 3       | 3    |
| Weighted  |          |        |          |        |       |         |            |       |         |        |         |      |
| Average   | 2.7      | 3      | 3        | 2.7    | 3     | 2.7     | 3          | 2.7   | 3       | 3      | 3       | 2.7  |

# WORK WITH INDIVIDUALS AND FAMILIES

**Course Outcomes (COs):** 

**CO 1:** To understand the individual, family and their problems and the social contextual factors affecting them.

**CO 2:** To understand Social Casework as a method of Social Work practice.

**CO 3:** To develop an understanding of application of case works in diverse settings.

|          | Co  | urse Ar     | ticulatio   | on Mati     | rix - Wo    | ork with    | n Indiv | iduals a    | nd Fan      | nilies (H | C)   |      |
|----------|-----|-------------|-------------|-------------|-------------|-------------|---------|-------------|-------------|-----------|------|------|
| CO/PO    | PO1 | <b>PO 2</b> | <b>PO 3</b> | <b>PO 4</b> | <b>PO 5</b> | <b>PO 6</b> | PO7     | <b>PO 8</b> | <b>PO 9</b> | PO10      | PO11 | PO12 |
| CO1      | 3   | 3           | 3           | 3           | 3           | 3           | 3       | 3           | 3           | 3         | 3    | 3    |
| CO2      | 3   | 3           | 3           | 3           | 3           | 3           | 3       | 3           | 3           | 3         | 3    | 3    |
| CO3      | 3   | 3           | 3           | 3           | 3           | 3           | 3       | 3           | 3           | 3         | 3    | 3    |
| Weighted |     |             |             |             |             |             |         |             |             |           |      |      |
| Average  | 3   | 3           | 3           | 3           | 3           | 3           | 3       | 3           | 3           | 3         | 3    | 3    |

### Work with Groups

 Course Outcomes (COs):

 CO 1: Ability to Understand the nature and types of groups.

 CO 2: Understand Social Group Work as a method of Social Work practice

 CO 3: Know the basic concepts, tools, techniques, processes and Skills of working with groups.

|                     |     | С    | ourse Ai | rticulati | on Matr | rix - Wor | ·k with | Groups | (HC) |      |          |          |
|---------------------|-----|------|----------|-----------|---------|-----------|---------|--------|------|------|----------|----------|
| CO/PO               | PO1 | PO 2 | PO 3     | PO 4      | PO 5    | PO 6      | PO7     | PO 8   | PO 9 | PO10 | PO<br>11 | PO<br>12 |
| C01                 | 3   | 3    | 3        | 3         | 3       | 3         | 3       | 3      | 3    | 3    | 3        | 3        |
| CO2                 | 3   | 3    | 3        | 3         | 3       | 3         | 3       | 3      | 3    | 3    | 3        | 3        |
| CO3                 | 3   | 3    | 3        | 3         | 3       | 3         | 3       | 3      | 3    | 3    | 3        | 3        |
| CO4                 | 3   | 3    | 3        | 3         | 3       | 3         | 3       | 3      | 3    | 3    | 3        | 3        |
| Weighted<br>Average | 3   | 3    | 3        | 3         | 3       | 3         | 3       | 3      | 3    | 3    | 3        | 3        |

### WORK WITH COMMUNITIES

### **Course Outcomes (COs):**

**CO 1:** Understand the fundamental concepts and components of community, community organization and social action

**CO 2:** Understand the models of community organization and social action

**CO 3:** Understand the relationship of community organization and soScial action with other methods of social work.

**CO 4:** Understand various social movements in India

### **Course Articulation Matrix - Work with Communities (HC)**

| CO/PO    | PO1 | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | PO 6 | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |
|----------|-----|------|------|------|-------------|------|------------|-------------|------|------|------|------|
| CO1      | 3   | 3    | 3    | 3    | 3           | 3    | 3          | 3           | 3    | 3    | 3    | 3    |
| CO2      | 3   | 3    | 3    | 3    | 3           | 3    | 3          | 3           | 3    | 3    | 3    | 3    |
| CO3      | 3   | 3    | 3    | 3    | 3           | 3    | 3          | 3           | 3    | 3    | 3    | 3    |
| CO4      | 3   | 3    | 3    | 3    | 3           | 3    | 3          | 3           | 3    | 3    | 3    | 3    |
| Weighted |     |      |      |      |             |      |            |             |      |      |      |      |
| Average  | 3   | 3    | 3    | 3    | 3           | 3    | 3          | 3           | 3    | 3    | 3    | 3    |

# SOCIAL WORK PRACTICUM – I

| Course Outco | omes (COs):                                                                      |
|--------------|----------------------------------------------------------------------------------|
| CO 1:        | Work in agencies working in different types of areas of Social Work practice     |
| CO 2:        | Develop work plan in consultation with agency supervisor                         |
| CO 3:        | Develop capacity for observation and analysis of social realities                |
| CO 4:        | Practice the methods of working with individuals and groups                      |
| CO 5:        | Develop understanding of the needs, problems and Programmes for different target |
| groups       | 5                                                                                |

|          | (   | Course | Articu | lation | Matrix | - Soci | al Wor | k Prac | ticum · | – I (HC) |      |      |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|---------|----------|------|------|
| CO/PO    | PO1 | PO     | PO     | PO     | PO     | PO     | PO7    | PO     | PO      | PO10     | PO11 | PO12 |
|          |     | 2      | 3      | 4      | 5      | 6      |        | 8      | 9       |          |      |      |
| C01      | 3   | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3       | 3        | 3    | 3    |
| CO2      | 3   | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3       | 3        | 3    | 3    |
| CO3      | 3   | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3       | 3        | 3    | 3    |
| CO4      | 3   | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3       | 3        | 3    | 3    |
| Weighted |     |        |        |        |        |        |        |        |         |          |      |      |
| Average  | 3   | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3       | 3        | 3    | 3    |

Honor's level even semester (II Semester)

MANAGEMENT OF DEVELOPMENTAL ANDWELFARE

### SERVICES

Course Outcomes (COs):

**CO 1:** Understand the administration of welfare organizations and civil society organization / Non Government organization.

**CO** 2:Understand the scope for social work in welfare organizations and NGO's

**CO 3**:Understand the scope for social work in welfare organizations and NGO's

**CO** 4:Develop knowledge about registration procedure of organization

| Cour     | se Arti | culation | n Matri | x - Mar | nageme | nt of De | velopn     | nental a | nd Wel | fare Ser | vices (H | (C)  |
|----------|---------|----------|---------|---------|--------|----------|------------|----------|--------|----------|----------|------|
| CO/PO    | PO1     | PO 2     | PO 3    | PO 4    | PO 5   | PO 6     | <b>PO7</b> | PO 8     | PO 9   | PO10     | PO11     | PO12 |
| C01      | 3       | 3        | 3       | 3       | 3      | 3        | 3          | 2        | 3      | 3        | 3        | 3    |
| CO2      | 3       | 3        | 3       | 3       | 3      | 3        | 2          | 3        | 3      | 3        | 3        | 2    |
| CO3      | 3       | 3        | 3       | 3       | 3      | 3        | 3          | 3        | 3      | 3        | 3        | 3    |
| CO4      | 3       | 3        | 3       | 3       | 3      | 3        | 3          | 3        | 3      | 3        | 3        | 3    |
| Weighted |         |          |         |         |        |          |            |          |        |          |          |      |
| Average  | 3       | 3        | 3       | 3       | 3      | 3        | 2.7        | 3        | 3      | 3        | 3        | 2.7  |

# SOCIAL WORK RESEARCH AND STATISTICS

| <b>Course Outco</b> | omes (COs):                                                                                  |
|---------------------|----------------------------------------------------------------------------------------------|
| CO 1:               | Gain understanding of nature and relevance of social science research and its application in |
| the stud            | dy of social phenomena.                                                                      |
| CO 2:               | Learn steps and process of formulation of research design and carry out the same.            |
| CO 3:               | Learn method of conducting a review of literature.                                           |
| CO 4:               | Develop familiarity with qualitative and quantitative research methods                       |
| CO 5:               | Learn how to prepare tools for collection of data                                            |
| CO 6:               | Learn process of data collection, organization, presentation, analysis and report Writing.   |

| Course Articulation Matrix - Social Work Research and Statistics (HC) |     |      |      |             |             |      |     |             |      |      |      |      |  |
|-----------------------------------------------------------------------|-----|------|------|-------------|-------------|------|-----|-------------|------|------|------|------|--|
| CO/PO                                                                 | PO1 | PO 2 | PO 3 | <b>PO 4</b> | <b>PO 5</b> | PO 6 | PO7 | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |
| C01                                                                   | 3   | 3    | 3    | 3           | 3           | 3    | 3   | 3           | 3    | 3    | 3    | 3    |  |
| CO2                                                                   | 3   | 3    | 3    | 3           | 3           | 3    | 3   | 3           | 3    | 3    | 3    | 3    |  |
| CO3                                                                   | 3   | 3    | 3    | 3           | 3           | 3    | 3   | 3           | 3    | 3    | 3    | 3    |  |
| CO4                                                                   | 3   | 3    | 3    | 3           | 3           | 3    | 3   | 3           | 3    | 3    | 3    | 3    |  |
| Weighted<br>Average                                                   | 3   | 3    | 3    | 3           | 3           | 3    | 3   | 3           | 3    | 3    | 3    | 3    |  |

# **SOCIAL WORK PRACTICUM – II**

### **Course Outcomes**

**CO 1:** Provides an opportunity to experience rural life, analyze rural dynamics, and observe the functioning of local self-government and voluntary organisations

CO 2: Aids peer participation in planning for activities for own group and those for local peopleCO 3: Helps develop skills to carry out, evaluate, and report the experience.

| Course Ar           | Course Articulation Matrix - Social Work Practicum – II (Social Work Camp and Summer Placement) |      |             |             |      |      |            |             |      |      |      |      |  |
|---------------------|-------------------------------------------------------------------------------------------------|------|-------------|-------------|------|------|------------|-------------|------|------|------|------|--|
| CO/PO               | PO1                                                                                             | PO 2 | <b>PO 3</b> | <b>PO 4</b> | PO 5 | PO 6 | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |
| CO1                 | 2                                                                                               | 3    | 3           | 3           | 3    | 3    | 3          | 3           | 3    | 3    | 3    | 3    |  |
| CO2                 | 2                                                                                               | 2    | 3           | 2           | 3    | 3    | 2          | 2           | 2    | 2    | 2    | 3    |  |
| CO3                 | 2                                                                                               | 3    | 3           | 3           | 2    | 3    | 3          | 2           | 3    | 3    | 3    | 2    |  |
| Weighted<br>Average | 2                                                                                               | 2.7  | 3           | 2.7         | 2.7  | 3    | 2.7        | 2.3         | 2.7  | 2.7  | 2.7  | 2.7  |  |

# SOCIAL WORK PRACTICUM – III

| Course Ou      | tcomes (COs):                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| CO 1:          | Develop work plan in consultation with agency supervisor                                                                     |
| CO 2:          | Continue practicing the methods of working with individuals and groups                                                       |
| CO 3:          | Identify and utilize human, material and financial resources                                                                 |
| CO 4:<br>refer | Develop process-oriented skills of working with individuals, families and groups with special rence to social support system |

| Course Articulation Matrix - Social Work Practicum – III |                                                                                                                                                                |   |   |   |   |     |   |   |   |     |   |   |  |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|-----|---|---|---|-----|---|---|--|--|
| CO/PO                                                    | O/PO         PO1         PO 2         PO 3         PO 4         PO 5         PO 6         PO7         PO 8         PO 9         PO10         PO11         PO12 |   |   |   |   |     |   |   |   |     |   |   |  |  |
| CO1                                                      | 3                                                                                                                                                              | 3 | 3 | 2 | 3 | 3   | 3 | 3 | 3 | 3   | 3 | 3 |  |  |
| CO2                                                      | 3                                                                                                                                                              | 3 | 3 | 2 | 3 | 2   | 3 | 3 | 3 | 2   | 3 | 3 |  |  |
| CO3                                                      | 3                                                                                                                                                              | 3 | 3 | 2 | 3 | 3   | 3 | 3 | 3 | 2   | 3 | 3 |  |  |
| Weighted<br>Average                                      | 3                                                                                                                                                              | 3 | 3 | 2 | 3 | 2.7 | 3 | 3 | 3 | 2.3 | 3 | 3 |  |  |

# **COMMUNICATION AND COUNSELING**

### **Course Outcomes (COs):**

**CO 1:** Provides an opportunity to experience rural life, analyze rural dynamics, and observe the functioning of local self-government andvoluntary organizations

**CO 2:** Aids peer participation in planning for activities for own group and those for local people

CO 3: Helps develop skills to carry out, evaluate, and report the experience.

|       | <b>Course Articulation Matrix -Communication and Counseling (SC)</b> |      |      |      |      |      |            |      |      |      |      |      |  |
|-------|----------------------------------------------------------------------|------|------|------|------|------|------------|------|------|------|------|------|--|
| CO/PO | PO1                                                                  | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | <b>PO7</b> | PO 8 | PO 9 | PO10 | PO11 | PO12 |  |
| CO1   | 2                                                                    | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    |  |
| CO2   | 2                                                                    | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    |  |

| CO3      | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4      | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Weighted |   |   |   |   |   |   |   |   |   |   |   |   |
| Average  | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |

# GANDHIAN APPROACH TO WELFAREAND DEVELOPMENT

### Course Outcomes (COs):

**CO 1:** Understand the applicability of Gandhian methods in the contemporary political, economic and social demines.

CO 2: Perceive, understand and appreciate the socially relevant ideals of Gandhi.

**CO 3:** analyze the simple living, struggle for truth and principle of nonviolence practiced and propagated by Mahatma Gandhi.

| Course Articulation Matrix - Gandhian Approach to Welfare and Development (SC) |     |     |             |     |      |      |            |      |             |      |      |      |  |
|--------------------------------------------------------------------------------|-----|-----|-------------|-----|------|------|------------|------|-------------|------|------|------|--|
| CO/PO                                                                          | PO1 | PO2 | <b>PO 3</b> | PO4 | PO 5 | PO 6 | <b>PO7</b> | PO 8 | <b>PO 9</b> | PO10 | PO11 | PO12 |  |
| CO1                                                                            | 2   | 2   | 2           | 2   | 2    | 2    | 2          | 2    | 2           | 2    | 2    | 2    |  |
| CO2                                                                            | 2   | 2   | 2           | 2   | 2    | 2    | 2          | 2    | 2           | 2    | 2    | 2    |  |
| CO3                                                                            | 2   | 2   | 2           | 2   | 2    | 2    | 2          | 2    | 2           | 2    | 2    | 2    |  |
| Weighted                                                                       |     |     |             |     |      |      |            |      |             |      |      |      |  |
| Average                                                                        | 2   | 2   | 2           | 2   | 2    | 2    | 2          | 2    | 2           | 2    | 2    | 2    |  |

# PERSONAL AND PROFESSIONAL GROWTH

### **Course Outcomes (COs):**

**CO 1:** Deep and well-informed awareness of their own skills, knowledge, and professional attributes interests, values and personality, and how these can be deployed in a variety of contexts. An ability to articulate their learning and development, critically

**CO 2:** Reflect on experiences (academic, extra-curricular, work and life), identify strengths, and to act on areas requiring further development.

**CO 3:** A critical awareness of personal capabilities, strengths and potential, and be able to communicate these constructively and realistically for a variety of contexts.

|                     | Course Articulation Matrix - Personal and Professional Growth (SC) |                                                                                                                                                   |   |   |     |     |     |     |   |     |     |     |  |  |  |
|---------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|-----|-----|-----|---|-----|-----|-----|--|--|--|
| CO/PO               | PO1                                                                | PO1         PO 2         PO 3         PO 4         PO 5         PO 6         PO7         PO 8         PO 9         PO10         PO11         PO12 |   |   |     |     |     |     |   |     |     |     |  |  |  |
| CO1                 | 3                                                                  | 3                                                                                                                                                 | 3 | 3 | 3   | 3   | 3   | 3   | 3 | 3   | 3   | 3   |  |  |  |
| CO2                 | 3                                                                  | 2                                                                                                                                                 | 3 | 3 | 2   | 2   | 3   | 2   | 3 | 3   | 2   | 2   |  |  |  |
| CO3                 | 3                                                                  | 2                                                                                                                                                 | 3 | 3 | 3   | 3   | 2   | 2   | 3 | 2   | 3   | 3   |  |  |  |
| Weighted<br>Average | 3                                                                  | 2.3                                                                                                                                               | 3 | 3 | 2.7 | 2.7 | 2.7 | 2.3 | 3 | 2.7 | 2.7 | 2.7 |  |  |  |

### POPULATION AND ENVIRONMENT

#### **Course Outcomes (COs):**

**CO 1:** Understand the concept of population

**CO 2:** Develop skills for planning and implementing Family Planning and welfare programmes.

**CO 3:** Study role of social workers in family welfare programmes and Environment Change.

| Course Articulation Matrix - Population and Environment (SC) |     |      |      |      |             |             |            |             |      |      |      |      |  |
|--------------------------------------------------------------|-----|------|------|------|-------------|-------------|------------|-------------|------|------|------|------|--|
| CO/PO                                                        | PO1 | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |
| CO1                                                          | 2   | 2    | 2    | 2    | 2           | 2           | 2          | 2           | 2    | 2    | 2    | 2    |  |
| CO2                                                          | 2   | 2    | 2    | 2    | 2           | 2           | 2          | 2           | 2    | 2    | 2    | 2    |  |
| CO3                                                          | 2   | 2    | 2    | 2    | 2           | 2           | 2          | 2           | 2    | 2    | 2    | 2    |  |
| Weighted<br>Average                                          | 2   | 2    | 2    | 2    | 2           | 2           | 2          | 2           | 2    | 2    | 2    | 2    |  |

# SOCIAL WORK PRACTICE WITH CHILDREN

| Course Outcomes ( | COs) | ): |
|-------------------|------|----|
|-------------------|------|----|

**CO 1:** Able to deliver services for children in appropriate manner.

**CO 2:** Students will be able to design, implement and evaluate a variety of strategies to provide services for Children

|                     | <b>Course Articulation Matrix - Social Work Practice with Children (OE)</b> |      |      |             |      |      |     |             |      |      |      |      |  |  |
|---------------------|-----------------------------------------------------------------------------|------|------|-------------|------|------|-----|-------------|------|------|------|------|--|--|
| CO/PO               | PO1                                                                         | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | PO 6 | PO7 | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 2                                                                           | 2    | 2    | 2           | 2    | 2    | 2   | 2           | 2    | 2    | 2    | 2    |  |  |
| CO2                 | 2                                                                           | 2    | 2    | 2           | 2    | 2    | 2   | 2           | 2    | 2    | 2    | 2    |  |  |
| Weighted<br>Average | 2                                                                           | 2    | 2    | 2           | 2    | 2    | 2   | 2           | 2    | 2    | 2    | 2    |  |  |

### SCIENCE OF CRIME, PENOLOGY AND SOCIAL WORKPRACTICE

| Course Outcomes (COs):                                                                           |  |
|--------------------------------------------------------------------------------------------------|--|
| <b>CO 1:</b> Understand major forms of crime                                                     |  |
| <b>CO 2:</b> Gain knowledge about major theories of crime                                        |  |
| CO 3: Practice correctional Social Work in different institutional and no institutional settings |  |
| CO 4: Understand provisions of various social legislations in India                              |  |

| Course              | Course Articulation Matrix - Science of Crime, Penology and Social Work Practice (OE) |      |      |             |      |      |            |             |      |      |      |      |
|---------------------|---------------------------------------------------------------------------------------|------|------|-------------|------|------|------------|-------------|------|------|------|------|
| CO/PO               | PO1                                                                                   | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | PO 6 | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |
| CO1                 | 2                                                                                     | 2    | 2    | 2           | 2    | 2    | 2          | 2           | 2    | 2    | 2    | 2    |
| CO2                 | 2                                                                                     | 2    | 2    | 2           | 2    | 2    | 2          | 2           | 2    | 2    | 2    | 2    |
| CO3                 | 2                                                                                     | 2    | 2    | 2           | 2    | 2    | 2          | 2           | 2    | 2    | 2    | 2    |
| CO4                 | 2                                                                                     | 2    | 2    | 2           | 2    | 2    | 2          | 2           | 2    | 2    | 2    | 2    |
| Weighted<br>Average | 2                                                                                     | 2    | 2    | 2           | 2    | 2    | 2          | 2           | 2    | 2    | 2    | 2    |

Masters level- odd semester (III Semester)

### HUMAN RESOURCE MANAGEMENT

| CO 1:Cours | e Outcomes (COs):                                                                              |
|------------|------------------------------------------------------------------------------------------------|
| CO 2:      | Develop necessary skill set for application of various HR issues.                              |
| CO 3:      | Develop the understanding of the concept of human resource management and to understand its    |
| releva     | nce in organizations                                                                           |
| CO 4:      | Analyze the strategic issues and strategies required to select and develop manpower resources. |
| CO 5:      | Integrate the knowledge of HR concepts to take correct business decisions.                     |
|            |                                                                                                |

| Course Ar           | Course Articulation Matrix - Human Resource Management (HC) |      |      |             |      |             |            |             |      |      |      |      |
|---------------------|-------------------------------------------------------------|------|------|-------------|------|-------------|------------|-------------|------|------|------|------|
| CO/PO               | PO1                                                         | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |
| CO1                 | 3                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO2                 | 3                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO3                 | 3                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO4                 | 3                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| Weighted<br>Average | 3                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |

### SOCIAL WORK PRACTICUM - IV

### **Course Outcomes (COs):**

**CO 1:** Shall initiate and participate in direct service delivery.

CO 2: Work in sensitive areas like work with alcoholics, HIV/AIDS affected persons, adolescents for life ski11s development, youth for leadership development and couples for marital relationship and CO 3: enrichment work with elderly.

CO 4: Shall identify research areas in the community

|                     | Course Articulation Matrix - Social Work Practicum - IV (HC) |      |      |             |             |      |            |             |             |      |      |      |
|---------------------|--------------------------------------------------------------|------|------|-------------|-------------|------|------------|-------------|-------------|------|------|------|
| CO/PO               | PO1                                                          | PO 2 | PO 3 | <b>PO 4</b> | <b>PO 5</b> | PO 6 | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10 | PO11 | PO12 |
| CO1                 | 3                                                            | 3    | 3    | 2           | 3           | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| CO2                 | 3                                                            | 3    | 3    | 2           | 3           | 2    | 2          | 3           | 3           | 3    | 3    | 3    |
| CO3                 | 3                                                            | 3    | 3    | 2           | 3           | 3    | 3          | 3           | 2           | 2    | 3    | 2    |
| Weighted<br>Average | 3                                                            | 3    | 3    | 2           | 3           | 2.7  | 2.7        | 3           | 2.7         | 2.7  | 3    | 2.7  |

# SOCIAL WORK WITH TRIBAL AND RURAL COMMUNITIES.

| Course Outcomes (COs):                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|
| CO 1: Able to Understand Tribal Community                                                                                   |
| <b>CO 2:</b> Develop adequate skills to prepare and implement integrated development plan & projects for tribal Communities |
| <b>CO 3:</b> Develop trainees as competent change agent in the field of tribal development.                                 |

| Course Ar | Course Articulation Matrix - Social Work with Tribal and Rural Communities (SC) |      |             |             |      |             |            |             |      |      |      |      |
|-----------|---------------------------------------------------------------------------------|------|-------------|-------------|------|-------------|------------|-------------|------|------|------|------|
| CO/PO     | PO1                                                                             | PO 2 | <b>PO 3</b> | <b>PO 4</b> | PO 5 | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |
| CO1       | 3                                                                               | 3    | 3           | 2           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO2       | 3                                                                               | 3    | 3           | 2           | 3    | 3           | 3          | 3           | 3    | 3    | 2    | 3    |
| CO3       | 3                                                                               | 3    | 3           | 2           | 3    | 3           | 2          | 3           | 2    | 3    | 3    | 3    |
| Weighted  |                                                                                 |      |             |             |      |             |            |             |      |      |      |      |
| Average   | 3                                                                               | 3    | 3           | 2           | 3    | 3           | 2.7        | 3           | 2.7  | 3    | 2.7  | 3    |

### ORGANIZATIONAL BEHAVIOUR AND ORGANIZATIONALDEVELOPMENT

#### **Course Outcomes (COs):**

**CO 1:** Demonstrate the applicability of the concept of organizational behavior to understand the behavior of people in the organization.

**CO 2:** Analyze the complexities associated with management of the group behavior in the organization

**CO 3:** Demonstrate how the organizational behavior can integrate in understanding the motivation (why) behind behavior of people in the organization.

| Course A            | rticula | ation M | atrix - ( | Organis | ational | Behavi | or and | Organi      | sationa     | l Develo | pment ( | SC3) |
|---------------------|---------|---------|-----------|---------|---------|--------|--------|-------------|-------------|----------|---------|------|
| CO/PO               | PO1     | PO 2    | PO 3      | PO 4    | PO 5    | PO 6   | PO7    | <b>PO 8</b> | <b>PO 9</b> | PO10     | PO11    | PO12 |
| CO1                 | 3       | 3       | 3         | 2       | 3       | 3      | 3      | 3           | 3           | 3        | 2       | 3    |
| CO2                 | 2       | 3       | 2         | 2       | 3       | 3      | 2      | 3           | 2           | 3        | 2       | 3    |
| CO3                 | 3       | 3       | 2         | 2       | 3       | 3      | 3      | 3           | 3           | 3        | 2       | 3    |
| Weighted<br>Average | 2.7     | 3       | 2.3       | 2       | 3       | 3      | 2.7    | 3           | 2.7         | 3        | 2       | 3    |

### PREVENTIVE AND SOCIAL MEDICINE AND MEDICALSOCIAL WORK

#### **Course Outcomes (COs):**

**CO** 1: Able to Understand the concept and dimensions of health.

**CO 2:** Able to Analyze issues related to the prevention, clinical features and treatment of major communicable and non-communicable diseases.

**CO 3:** Able to analyze Nature of medical social work services

**CO 4:** To gain understanding on health care services at different levels.

| Course A | rticula | tion Ma     | atrix - I   | Prevent     | ive and     | Social      | Medici     | ine and     | Medica      | al Social | Work ( | (SC4) |
|----------|---------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-----------|--------|-------|
| CO/PO    | PO1     | <b>PO 2</b> | <b>PO 3</b> | <b>PO 4</b> | <b>PO 5</b> | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10      | PO11   | PO12  |

| CO1                 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2                 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO3                 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| CO4                 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Weighted<br>Average | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

# **REHABILITATION AND AFTER CARE SERVICES**

## Course Outcomes (COs):

**CO 1:** Articulate the principles of independence, inclusion, choice and selfdetermination, empowerment, access, and respect for individual differences

**CO 2:** apply the principles of disability-related legislation including the rights of people with disabilities to the practice of rehabilitation counseling

**CO 3:** To develop understanding on different rehabilitation settings, different therapeutic approaches to rehabilitation process.

|                     | Course Articulation Matrix - Rehabilitation and Aftercare Services (SC4) |      |      |             |             |      |            |             |             |      |      |      |
|---------------------|--------------------------------------------------------------------------|------|------|-------------|-------------|------|------------|-------------|-------------|------|------|------|
| CO/PO               | PO1                                                                      | PO 2 | PO 3 | <b>PO 4</b> | <b>PO 5</b> | PO 6 | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10 | PO11 | PO12 |
| CO1                 | 2                                                                        | 2    | 2    | 2           | 2           | 2    | 2          | 2           | 2           | 2    | 2    | 2    |
| CO2                 | 2                                                                        | 2    | 2    | 2           | 2           | 2    | 2          | 2           | 2           | 2    | 2    | 2    |
| CO3                 | 2                                                                        | 2    | 2    | 2           | 2           | 2    | 2          | 2           | 2           | 2    | 2    | 2    |
| Weighted<br>Average | 2                                                                        | 2    | 2    | 2           | 2           | 2    | 2          | 2           | 2           | 2    | 2    | 2    |

# SOCIAL POLICY, PLANNING AND DEVELOPMENT

| Course Outcomes (COs):                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1: Develop understanding of the concept of social policy and social planning                                                                                                                                                                                   |
| CO 2: Understand Concept and nature of Development and Human Development                                                                                                                                                                                          |
| <b>CO 3:</b> Understand concept of social welfare and social welfare administration                                                                                                                                                                               |
| <b>CO 4:</b> Acquire the social work skills adapted to facilitate the process of rehabilitation, the rights and legal provisions provided for differently abled people and assimilate the knowledge of social work practice to disability specific client service |
|                                                                                                                                                                                                                                                                   |

| (          | Course Articulation Matrix - Social Policy, Planning and Development(SC5) |      |      |             |      |             |            |      |      |      |      |      |
|------------|---------------------------------------------------------------------------|------|------|-------------|------|-------------|------------|------|------|------|------|------|
| CO/PO      | PO1                                                                       | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | <b>PO 6</b> | <b>PO7</b> | PO 8 | PO 9 | PO10 | PO11 | PO12 |
| CO1        | 2                                                                         | 2    | 2    | 2           | 2    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |
| CO2        | 2                                                                         | 2    | 2    | 2           | 2    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |
| CO3        | 2                                                                         | 2    | 2    | 2           | 2    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |
| <b>CO4</b> | 2                                                                         | 2    | 2    | 2           | 2    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |

| Weighted | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|
| Average  | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |

# LEGAL SYSTEM IN INDIA

| Course Outc | omes (COs):                                                                                |
|-------------|--------------------------------------------------------------------------------------------|
| CO 1:       | Understand key concepts of deviance and crime                                              |
| CO 2:       | Practice correctional Social Work in different institutional and noninstitutional settings |
| CO 3:       | Understand provisions of various social legislations in India                              |

| Course Ar           | Course Articulation Matrix -Legal System in India (SC5) |         |         |         |         |         |     |         |         |      |      |      |
|---------------------|---------------------------------------------------------|---------|---------|---------|---------|---------|-----|---------|---------|------|------|------|
| CO/PO               | PO1                                                     | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO7 | PO<br>8 | PO<br>9 | PO10 | PO11 | PO12 |
| CO1                 | 3                                                       | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| CO2                 | 3                                                       | 3       | 2       | 2       | 3       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| CO3                 | 3                                                       | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 3       | 2    | 3    | 3    |
| Weighted<br>Average | 3                                                       | 2.3     | 2       | 2       | 2.3     | 2       | 2   | 2       | 2.3     | 2    | 2.3  | 2.3  |

# GERONTOLOGICAL SOCIAL WORK

| Course Out | comes (COs):                                                      |
|------------|-------------------------------------------------------------------|
| CO 1:      | Able to understand perspectives on aging                          |
| CO 2:      | Able to understand challenges and problems                        |
| CO 3:      | Able to Demonstrate awareness in National Policy on Older Persons |

|       | Course Articulation Matrix -Gerontological Social Work (OE) |      |      |      |      |             |            |      |             |      |      |      |
|-------|-------------------------------------------------------------|------|------|------|------|-------------|------------|------|-------------|------|------|------|
| CO/PO | PO1                                                         | PO 2 | PO 3 | PO 4 | PO 5 | <b>PO 6</b> | <b>PO7</b> | PO 8 | <b>PO 9</b> | PO10 | PO11 | PO12 |
| CO1   | 2                                                           | 2    | 2    | 2    | 2    | 2           | 2          | 2    | 2           | 2    | 2    | 2    |
| CO2   | 2                                                           | 2    | 2    | 2    | 2    | 2           | 2          | 2    | 2           | 2    | 2    | 2    |
| CO3   | 2                                                           | 2    | 2    | 2    | 2    | 2           | 2          | 2    | 2           | 2    | 2    | 2    |
| CO4   | 2                                                           | 2    | 2    | 2    | 2    | 2           | 2          | 2    | 2           | 2    | 2    | 2    |

### MANAGEMENT OF NON- GOVERNMENTALORGANIZATIONS

| Course Ou | utcomes | (COs): |
|-----------|---------|--------|
|-----------|---------|--------|

| CO 1: | Able to understand role of NGOs in societal development |
|-------|---------------------------------------------------------|
| CO 2: | Understand the procedures for registration of NGOs      |
| CO 3: | To provide managerial training and skills               |
| CO 4: | Enhance the knowledge on the fundamentals of accounting |

| Course A            | Course Articulation Matrix – Management of Non-Governmental Organizations (OE) |         |         |         |         |         |     |         |         |      |      |      |
|---------------------|--------------------------------------------------------------------------------|---------|---------|---------|---------|---------|-----|---------|---------|------|------|------|
| CO/PO               | PO1                                                                            | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO7 | PO<br>8 | PO<br>9 | PO10 | PO11 | PO12 |
| CO1                 | 2                                                                              | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| CO2                 | 2                                                                              | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| CO3                 | 2                                                                              | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| CO4                 | 2                                                                              | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |
| Weighted<br>Average | 2                                                                              | 2       | 2       | 2       | 2       | 2       | 2   | 2       | 2       | 2    | 2    | 2    |

# Master's level even semester (IV Semester)

# **EMPLOYEE RELATIONS AND LEGISLATIONS**

### **Course Outcomes (COs):**

**CO** 1: Know the development and the judicial setup of Labour Laws.

**CO 2:** Describe the knowledge of Industrial Relations.

**CO 3:** Learn the laws relating to Industrial Relations, Social Security and Working conditions and also learn the enquiry procedural and industrial discipline.

CO 4: Apply the Industrial Disputes Act for employee

|              | Course Articulation Matrix -Employee Relations and Legislation (HC) |      |      |             |      |      |            |             |             |      |      |      |
|--------------|---------------------------------------------------------------------|------|------|-------------|------|------|------------|-------------|-------------|------|------|------|
| CO/PO        | PO1                                                                 | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | PO 6 | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10 | PO11 | PO12 |
| CO1          | 3                                                                   | 3    | 3    | 3           | 3    | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| CO2          | 3                                                                   | 3    | 3    | 3           | 3    | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| CO3          | 3                                                                   | 3    | 3    | 3           | 3    | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| CO4          | 3                                                                   | 3    | 3    | 3           | 3    | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| Weight<br>ed | 3                                                                   | 3    | 3    | 3           | 3    | 3    | 3          | 3           | 3           | 3    | 3    | 3    |
| Averag<br>e  |                                                                     |      |      |             |      |      |            |             |             |      |      |      |

### MENTAL HEALTH AND PSYCHIATRIC SOCIALWORK

### **Course Outcomes (COs):**

- **CO 1:** Able to understand psychological concepts and its relevance to Social Work
- **CO 2:** Able to understand the basic concepts and processes in social psychology and its relevance to Social Work

CO 3: Able to understand determinants and processes of personality development

**CO 4:** Able to understand social attitudes and psycho-social behaviour

| Course Ar           | Course Articulation Matrix -EMental Health and Psychiatric Social Work (HC) |      |      |             |      |             |            |             |      |      |      |      |
|---------------------|-----------------------------------------------------------------------------|------|------|-------------|------|-------------|------------|-------------|------|------|------|------|
| CO/PO               | PO1                                                                         | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |
| CO1                 | 3                                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO2                 | 3                                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO3                 | 3                                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| CO4                 | 3                                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |
| Weighted<br>Average | 3                                                                           | 3    | 3    | 3           | 3    | 3           | 3          | 3           | 3    | 3    | 3    | 3    |

# **MAJOR PROJECT**

| Course Outcomes (COs):                                        |  |
|---------------------------------------------------------------|--|
| <b>CO 1:</b> Develop ability to initiate and conduct research |  |

**CO 2:** Develop research Skills of identifying and selecting a research area and preparing research proposal

CO 3: Develop skills of doing literature review and steps of research methodology

CO 4: Familiarised with the process of data analysis and report writing

**CO 5:** To understand ethical considerations of research

|                     | <b>Course Articulation Matrix - Major Project (HC)</b> |      |      |             |      |             |     |             |      |      |      |      |  |  |
|---------------------|--------------------------------------------------------|------|------|-------------|------|-------------|-----|-------------|------|------|------|------|--|--|
| CO/PO               | PO1                                                    | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | <b>PO 6</b> | PO7 | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 3                                                      | 3    | 3    | 3           | 3    | 3           | 3   | 3           | 3    | 3    | 3    | 3    |  |  |
| CO2                 | 3                                                      | 3    | 3    | 3           | 3    | 3           | 3   | 3           | 3    | 3    | 3    | 3    |  |  |
| CO3                 | 3                                                      | 3    | 3    | 3           | 3    | 3           | 3   | 3           | 3    | 3    | 3    | 3    |  |  |
| CO4                 | 3                                                      | 3    | 3    | 3           | 3    | 3           | 3   | 3           | 3    | 3    | 3    | 3    |  |  |
| Weighted<br>Average | 3                                                      | 3    | 3    | 3           | 3    | 3           | 3   | 3           | 3    | 3    | 3    | 3    |  |  |

## SOCIAL WORK PRACTICUM – V

| Course Out     | tcomes (COs):                                                                          |
|----------------|----------------------------------------------------------------------------------------|
| CO 1:          | Shall initiate and participate in direct Service delivery.                             |
| CO 2:<br>areas | Work in areas like work with Human Resource Management, Psychiatric SocialWork and key |
| CO 3:          | Shall identify research areas in the community                                         |

| Course Ar           | Course Articulation Matrix -Social Work Practicum – V (HC) |      |      |             |             |             |            |             |      |      |      |      |  |  |
|---------------------|------------------------------------------------------------|------|------|-------------|-------------|-------------|------------|-------------|------|------|------|------|--|--|
| CO/PO               | PO1                                                        | PO 2 | PO 3 | <b>PO 4</b> | <b>PO 5</b> | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 3                                                          | 3    | 3    | 3           | 3           | 3           | 3          | 3           | 2    | 2    | 3    | 3    |  |  |
| CO2                 | 3                                                          | 3    | 3    | 3           | 3           | 3           | 3          | 3           | 2    | 2    | 3    | 3    |  |  |
| CO3                 | 3                                                          | 3    | 3    | 3           | 3           | 3           | 3          | 3           | 2    | 2    | 3    | 3    |  |  |
| Weighted<br>Average | 3                                                          | 3    | 3    | 3           | 3           | 3           | 3          | 3           | 2    | 2    | 3    | 3    |  |  |

# SOCIAL WORK PRACTICUM – VI: (BLOCK PLACEMENT)

### **Course Outcomes (COs):**

CO 1: Shall work in an organization continuously for 6 weeks and understand the work place better

CO 2: Work in areas relevant to social work interventions

**CO 3:** Shall identify research areas in the community / Human Resource Management / Psychiatric SocialWork

| Course A            | Course Articulation Matrix -SOCIAL WORK PRACTICUM – VI: (BLOCK PLACEMENT) |      |      |      |             |             |            |             |             |      |      |      |  |  |
|---------------------|---------------------------------------------------------------------------|------|------|------|-------------|-------------|------------|-------------|-------------|------|------|------|--|--|
| CO/PO               | PO1                                                                       | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | <b>PO 6</b> | <b>PO7</b> | <b>PO 8</b> | <b>PO 9</b> | PO10 | PO11 | PO12 |  |  |
| CO1                 | 3                                                                         | 3    | 2    | 2    | 3           | 3           | 3          | 2           | 2           | 3    | 3    | 3    |  |  |
| CO2                 | 3                                                                         | 3    | 2    | 2    | 3           | 3           | 3          | 2           | 2           | 3    | 3    | 3    |  |  |
| CO3                 | 3                                                                         | 3    | 2    | 2    | 3           | 3           | 3          | 2           | 2           | 3    | 3    | 3    |  |  |
| Weighted<br>Average | 3                                                                         | 3    | 2    | 2    | 3           | 3           | 3          | 2           | 2           | 3    | 3    | 3    |  |  |

### HUMAN RESOURCE DEVELOPMENT ANDEMPLOYEE

| Course | Outcomes | (COs): |   |
|--------|----------|--------|---|
|        |          |        | _ |

**CO** 1: Understand key functions in management as applied in practice.

**CO 2:** Understand and analyze different tends in HRD that have influenced both Human Resource Development and Human Development.

**CO 3:** Provide in-depth knowledge into the issues related to trainee, the trainer organization in the context of training and learning process

**CO 4:** Provide inputs on assessment and evaluation of training programme this is essential to determine training effectiveness

| Course              | Course Articulation Matrix -Human Resource Development and Employee Wellness (HC) |      |      |             |      |             |            |      |      |      |      |      |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|------|------|-------------|------|-------------|------------|------|------|------|------|------|--|--|--|
| CO/PO               | PO1                                                                               | PO 2 | PO 3 | <b>PO 4</b> | PO 5 | <b>PO 6</b> | <b>PO7</b> | PO 8 | PO 9 | PO10 | PO11 | PO12 |  |  |  |
| CO1                 | 3                                                                                 | 2    | 2    | 2           | 3    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |  |  |  |
| CO2                 | 3                                                                                 | 2    | 2    | 2           | 3    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |  |  |  |
| CO3                 | 3                                                                                 | 2    | 2    | 2           | 3    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |  |  |  |
| CO4                 | 3                                                                                 | 2    | 2    | 2           | 3    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |  |  |  |
| Weighted<br>Average | 3                                                                                 | 2    | 2    | 2           | 3    | 2           | 2          | 2    | 2    | 2    | 2    | 2    |  |  |  |

### **CASE STUDIES**

### **Course Outcomes (COs):**

**CO 1:** Analyze the case using relevant theoretical concepts from unit

**CO 2:** Offer learners an opportunity to think and act critically reflect on their process of thinking and action and its consequences

|                     | <b>Course Articulation Matrix -Case studies (HC)</b> |      |      |      |      |      |            |      |      |      |      |      |  |  |
|---------------------|------------------------------------------------------|------|------|------|------|------|------------|------|------|------|------|------|--|--|
| CO/PO               | PO1                                                  | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | <b>PO7</b> | PO 8 | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 2                                                    | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    |  |  |
| CO2                 | 2                                                    | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    |  |  |
| Weighted<br>Average | 2                                                    | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    |  |  |

# **DISASTER MANAGEMENT**

| Course Ou      | tcomes (COs):                                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------|
| CO 1:<br>India | Able to concepts, theories and approaches of disaster management with specific reference to an context |
| CO 2:          | Develop skills to analyse factors contributing to disaster                                             |
| CO 3:          | Develop an understanding of the process of disaster management                                         |
| CO 4:          | Develop an understanding of the social worker's role in the team for disaster management.              |

|                     | <b>Course Articulation Matrix -Disaster Management (OE)</b> |      |      |      |             |      |            |             |      |      |      |      |  |  |
|---------------------|-------------------------------------------------------------|------|------|------|-------------|------|------------|-------------|------|------|------|------|--|--|
| CO/PO               | PO1                                                         | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | PO 6 | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 2                                                           | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| CO2                 | 2                                                           | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| CO3                 | 2                                                           | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| CO4                 | 2                                                           | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| Weighted<br>Average | 2                                                           | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |

# CORRECTIONAL ADMINISTRATION AND SERVICES

### Course Outcomes (COs):

Able to recognize correctional institution and non-institutional programmes.

To gain understanding different services for juvenile, young and adults offenders and also to understand the legal provisions and procedures for their assistance

Ability to identify structure, function, treatment and facilities provided by the institutions.

|                     | Course Articulation Matrix -Correctional Administration and Services (OE) |      |      |      |             |      |            |             |      |      |      |      |  |  |
|---------------------|---------------------------------------------------------------------------|------|------|------|-------------|------|------------|-------------|------|------|------|------|--|--|
| CO/PO               | PO1                                                                       | PO 2 | PO 3 | PO 4 | <b>PO 5</b> | PO 6 | <b>PO7</b> | <b>PO 8</b> | PO 9 | PO10 | PO11 | PO12 |  |  |
| CO1                 | 2                                                                         | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| CO2                 | 2                                                                         | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| CO3                 | 2                                                                         | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |
| Weighted<br>Average | 2                                                                         | 2    | 2    | 2    | 2           | 2    | 2          | 2           | 2    | 2    | 2    | 2    |  |  |